首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schizophrenia: moving beyond monoamine antagonists   总被引:1,自引:0,他引:1  
Schizophrenia is a disabling psychiatric disorder characterized by positive, negative, and cognitive symptoms. The first pharmacological treatments for schizophrenia were discovered by serendipitous, albeit carefully documented, clinical observations. The discovery of chlorpromazine and other dopamine D2 receptor antagonists as antipsychotic agents set the early course of drug discovery in the context of schizophrenia and other psychiatric disorders, and various monoamine receptors became the prime focus of neuropharmacological studies. Success in treating the positive symptoms nevertheless remained limited by the general lack of efficacy in addressing negative symptoms and cognitive impairment. In recent years, several new experimental approaches have emerged for the identification and treatment of different symptom clusters that do not rely on blockade of monoamine receptors. Muscarinic, nicotinic, and glutamatergic signaling mechanisms have become essential to neuropharmacological and behavioral models of discrete aspects of schizophrenia. And as a consequence of these insights, novel drug entities have become available to study and potentially treat the disabling cognitive and negative symptoms of psychiatric disease. Current attempts to target a new range of receptors entail unprecedented fine-tuning in the pharmacological manipulation of specific receptor subtypes.  相似文献   

2.
5-HT(1A) serotonin and D1 dopamine receptor agonists have been postulated to be able to improve negative and cognitive impairment symptoms of schizophrenia, while partial agonists and antagonists of the D2 and 5-HT(2A) receptors have been reported to be effective in reducing positive symptoms. There is therefore a need for well-defined homology models for the design of more selective antipsychotic agents, since no three-dimensional (3D) crystal structures of these receptors are currently available. In this study, homology models were built based on the high-resolution crystal structure of the β(2)-adrenergic receptor (2RH1) and further refined via molecular dynamics simulations in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer system with the GROMOS96 53A6 united atom force field. Docking evaluations with representative agonists and antagonists using AutoDock 4.2 revealed binding modes in agreement with experimentally determined site-directed mutagenesis data and significant correlations between the computed and experimental pK (i) values. The models are also able to distinguish between antipsychotic agents with different selectivities and binding affinities for the four receptors, as well as to differentiate active compounds from decoys. Hence, these human 5-HT(1A), 5-HT(2A), D1 and D2 receptor homology models are capable of predicting the activities of novel ligands, and can be used as 3D templates for antipsychotic drug design and discovery.  相似文献   

3.
Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis   总被引:3,自引:0,他引:3  
1. After 50 years of antipsychotic drug development focused on the dopamine D2 receptor, schizophrenia remains a chronic, disabling disorder for most affected individuals.2. Studies over the last decade demonstrate that administration of low doses of NMDA receptor antagonists can cause in normal subjects the negative symptoms, cognitive impairments and physiologic disturbances observed in schizophrenia.3. Furthermore, a number of recently identified risk genes for schizophrenia affect NMDA receptor function or glutamatergic neurotransmission.4. Placebo-controlled trials with agents that directly or indirectly activate the glycine modulatory site on the NMDA receptor have shown reduction in negative symptoms, improvement in cognition and in some cases reduction in positive symptoms in schizophrenic patients receiving concurrent antipsychotic medications.5. Thus, hypofunction of the NMDA receptor, possibly on critical GABAergic inter-neurons, may contribute to the pathophysiology of schizophrenia.  相似文献   

4.
Snyder SH 《Neuron》2006,49(4):484-485
The dopamine hypothesis of schizophrenia is based on evidence that the major antipsychotic drugs act by blocking dopamine D2 receptors and that dopamine-releasing drugs worsen symptoms. In this issue of Neuron, Kellendonk et al. report an elegant conditional transgenic mouse overexpressing dopamine D2 receptors selectively in the striatum. Strikingly, these animals display selective cognitive impairment typically associated with frontal cortical defects and abnormal dopamine markers in the prefrontal cortex, suggesting that striatal dopamine receptors can influence cortical dopamine function.  相似文献   

5.
There is a pressing need to find and develop new antipsychotic agents for the treatment of schizophrenia. Current drugs primarily target dopamine D2 receptors and are only effective in the treatment of the positive symptoms of this indication. The tetrahydroprotoberberine natural product (±)-govadine has shown unique promise for the treatment of both the positive and negative symptoms of schizophrenia as it targets both dopamine D1 and D2 receptors. However, further clinical research has been hindered by the lack of availability of significant quantities of enantioenriched material. A new, enantioselective synthetic route has been developed that affords (-)-govadine in 39% overall yield over 5-steps from commercially available dopamine and homovanillic acid derivatives. Using only minor modifications in the synthetic route, (+)-govadine can be synthesized in comparable yields and enantioselectivities. The route is readily scalable as every intermediate was purified by crystallization and no flash column chromatography was necessary.  相似文献   

6.
The high affinity of antipsychotic drugs for the dopamine D2 receptor focused attention onto the role of these receptors in the genesis of psychoses and the pathology of schizophrenia. However, psychotic symptoms are only one aspect of the complex symptom profile associated with schizophrenia. Therefore, research continues into other neurochemical systems and their potential roles in key features associated with schizophrenia. Modulating the cholinergic system in attempts to treat schizophrenia predates specific neurochemical hypotheses of the disorder. Cholinergic modulation has progressed from the use of coma therapy, through the use of anti-cholinergic drugs to control side-effects of older (typical) antipsychotic medications, to the development of drugs designed to specifically activate selected muscarinic receptors. This review presents data implicating a decrease in muscarinic receptors, particularly the M1 receptor, in the pathology of schizophrenia and explores the potential physiological consequences of such a change, drawing on data available from muscarinic receptor knockout mice as well as clinical and pre-clinical pharmacology. The body of evidence presented suggests that deficits in muscarinic receptors are associated with some forms of schizophrenia and that targeting these receptors could prove to be of therapeutic benefit to patients with the disorder.  相似文献   

7.

Background

Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R) in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well.

Methodology/Principal Findings

To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power.

Conclusions/Significance

We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This suggests that converging deficits on fast-spiking interneurons may lead to decreased network function and thus aberrant gamma oscillations and cognitive decline in schizophrenia.  相似文献   

8.
Dopamine D4 receptors mediate a wide range of neuronal signal transduction cascades. Malfunctions of these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders, and their modification underlies the actions of many psychotropic drugs. Postmortem neuropathological and genetic studies provide inconclusive associations between D4 receptors and schizophrenia. Clinical trials of partially selective lead D4 antagonists have proved them to be ineffective against psychotic symptoms in patients diagnosed with schizophrenia. However, associations are emerging between D4 receptors and other neuropsychiatric disorders, including attention-deficit hyperactivity disorder as well as specific personality traits such as novelty seeking. Preclinical studies indicate that D4 receptors play a pivotal role in the cellular mechanisms of hyperactivity, impulsivity, and working memory. Accordingly, D4 receptors have broader implications for human illnesses than has been suggested by early focus on psychotic illness as a clinical target, and selective D4 agents may yield clinically useful drugs for several neuropsychiatric disorders that require improved treatments.  相似文献   

9.
A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg) or amisulpride (3 mg/kg) ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.  相似文献   

10.
Evidence is accumulating that the exclusive dopamine hypothesis of schizophrenia has to be abandoned. Instead, a more integrative approach combines different neurotransmitter systems, in which glutamatergic, GABAergic and dopaminergic pathways interact. This paradigm shift coincides with the recognition that, while typical and modern atypical antipsychotic drugs have efficiently controlled the dramatic psychotic symptoms of schizophrenia, their impact on negative and cognitive symptoms is negligible. Indeed, cognitive decline is now believed to represent the core of schizophrenic morbidity and in this context, impairment of glutamate and more specifically NMDA function is of major importance. Given that astrocytes are important in controlling glutamate homeostasis, it is necessary to assign a significant role to glial-neuronal interactions in the pathophysiology of schizophrenia. Indeed, recent data from several animal and human studies corroborate this notion. This review outlines current neurotransmitter hypotheses and evidence for glial impairment in schizophrenia. Furthermore, findings from recent studies of (13)C nuclear magnetic resonance spectroscopy in experimental models of schizophrenia and NMDA hypofunction are presented and their implications for future research on glial-neuronal interactions discussed.  相似文献   

11.
Schizophrenia is a chronic, complex and heterogeneous mental disorder, with pathological features of disrupted neuronal excitability and plasticity within limbic structures of the brain. These pathological features manifest behaviorally as positive symptoms (including hallucinations, delusions and thought disorder), negative symptoms (such as social withdrawal, apathy and emotional blunting) and other psychopathological symptoms (such as psychomotor retardation, lack of insight, poor attention and impulse control). Altered glutamate neurotransmission has for decades been linked to schizophrenia, but all commonly prescribed antipsychotics act on dopamine receptors. LY404039 is a selective agonist for metabotropic glutamate 2/3 (mGlu2/3) receptors and has shown antipsychotic potential in animal studies. With data from rodents, we provide new evidence that mGlu2/3 receptor agonists work by a distinct mechanism different from that of olanzapine. To clinically test this mechanism, an oral prodrug of LY404039 (LY2140023) was evaluated in schizophrenic patients with olanzapine as an active control in a randomized, three-armed, double-blind, placebo-controlled study. Treatment with LY2140023, like treatment with olanzapine, was safe and well-tolerated; treated patients showed statistically significant improvements in both positive and negative symptoms of schizophrenia compared to placebo (P < 0.001 at week 4). Notably, patients treated with LY2140023 did not differ from placebo-treated patients with respect to prolactin elevation, extrapyramidal symptoms or weight gain. These data suggest that mGlu2/3 receptor agonists have antipsychotic properties and may provide a new alternative for the treatment of schizophrenia.  相似文献   

12.
Schizophrenia and bipolar disorder remain two of the most severe and difficult to treat psychotic disorders hampered by our poor understanding of their pathologies. The development of typical antipsychotic drugs opened an avenue of investigation through the dopamine D2 receptor in schizophrenia. With the reintroduction of the atypical antipsychotic clozapine came the development of a new generation of atypical agents and hypotheses challenging the centrality of this receptor in explaining antipsychotic effects. Evaluation of these competing theories does not provide sufficient evidence to displace the importance of the dopamine D2 receptor in antipsychotic efficacy, but does raise limitations of it as an explanatory hypothesis. Further, the treatment of other symptom domains in schizophrenia remains relatively neglected and open for the development of novel therapies. Similar to schizophrenia, bipolar disorder presents a diversity of clinical states but unlike schizophrenia, its mainstay of treatment, lithium, has not had a clear receptor target impeding understanding of the disorder's pathology and treatment. This has pushed investigation into other domains emphasising a number of intracellular signalling pathways and glial-neuronal interactions. The heavy genetic loading of bipolar disorder has allowed linkage analyses to identify a number of putative regions, however, the diversity of phenotypes complicates such studies. Polymorphisms of candidate genes have yielded potential leads such as dopamine beta hydroxylase in mood disorder and the serotonin transporter for treatment response. It is anticipated that combiningthe above approaches may hold promise for the development of more effective treatments.  相似文献   

13.
M. V. Seeman 《CMAJ》1981,125(8):821-826
Neuroleptic drugs reduce the severity and prevent the recurrence of symptoms of schizophrenia. Recent studies indicate that these drugs probably produce their antipsychotic effects by blocking dopamine receptors in the brain, although they also block acetylcholine and norepinephrine receptors. The potency of commercially available neuroleptics in blocking dopamine receptors varies widely, being related to the compound''s lipid solubility. Neuroleptics predispose the patient to short-term and long-term medical hazards that must be weighed against the benefits of reduced symptom intensity, shortened psychotic episodes and lessened likelihood of recurrence of acute schizophrenic epidoses. The side effects associated with short-term therapy are either extremely rare or are treatable by dose change, medication change or the use of additional drugs. In long-term therapy the risks are more problematic in that they are sometimes irreversible. These include tardive dyskinesia, skin discoloration and corneal deposits. The clinician must consider the pattern aand severity of each patient''s present and past psychotic episodes before deciding whether maintenance therapy with neuroleptics is justified. If it is, doses should be re-evaluated frequently and kept as low as possible. Concomitant administration of anticholinergic agents should be avoided if possible. Most important, the long-term administration of neuroleptics should be prescribed only for patients with schizophrenia and not for those with conditions that respond to other treatments.  相似文献   

14.
15.
Improvement in some but not all domains of cognition during treatment with the atypical antipsychotic drugs clozapine, quetiapine, olanzapine, and risperidone has been reported in some but not all studies. It has been recently suggested that these reports are an artifact, related to lessening of the impairment due to typical neuroleptic drugs and anticholinergic agents. The purpose of this study was to further test the hypothesis that olanzapine, an atypical antipsychotic drug reported to have anticholinergic properties, improves cognition in patients with schizophrenia, including domains of cognition related closely to work and social function (ie, verbal learning and memory) and that this improvement is independent of improvement in psychopathology. Thirty-four patients with schizophrenia who were partial responders to typical antipsychotic drug treatment were evaluated with a comprehensive neurocognitive battery, including measures of executive functioning; verbal and visual learning and memory; working memory; immediate, selective, and sustained attention; perceptual/motor processing; and motor skills prior to and following treatment with olanzapine for 6 weeks. The Brief Psychiatric Rating Scale (BPRS) was used to assess psychopathology in patients treated with typical antipsychotic drugs. Subjects were switched to olanzapine (average dose 13.4 mg, range 5-20 mg) and reassessed following 6 weeks and 6 months of treatment. Significant improvement was noted in 9 of 19 cognitive tests, including measures of selective attention, verbal learning and memory, and verbal fluency. No cognitive test was worsened by olanzapine treatment. Improvements in the BPRS Total and Positive Symptom Subscale scores were noted. Improvements in verbal learning and memory, sustained attention, and psychomotor tracking were independent of improvement in psychopathology. These data suggest that olanzapine improved some but not all cognitive deficits in schizophrenia, including verbal memory, a cognitive domain impaired by anticholinergic drugs. The basis for the improvement in cognitive scores, which should lead to improvement in role functioning if real, is discussed.  相似文献   

16.
Antipsychotic drugs have various neuropharmacological properties as a result of their structural diversity. Despite their therapeutic benefits, most of the prescribed atypical antipsychotics can induce severe side effects, including weight gain, type II diabetes mellitus, and cardiovascular diseases. Among the developed atypical antipsychotic agents, tetracyclic dibenzodiazepine and thienobenzodiazepine compounds, particularly clozapine and olanzapine, are associated with the greatest weight gain and metabolic disturbances. However, the unique chemical structure of these compounds causes the low risk of side effects reported for typical antipsychotics (e.g. extrapyramidal symptoms and tardive dyskinesia). This report reviews the recent discovery of the potential role of the chemical structure of antipsychotics in their therapeutic properties and metabolic disturbances. By developing structure-activity relationship studies for atypical antipsychotics, we will improve our understanding of the structural modifications of these chemical classes that lead to reduced weight gain, which will be an invaluable step toward the discovery of the next generation of atypical antipsychotics. In this review, we suggest that a novel dibenzodiazepine or thienobenzodiazepine antipsychotic drug with lower affinity for H(1) receptors may significantly advance schizophrenia therapy.  相似文献   

17.
The role of muscarinic receptors in schizophrenia was investigated using the muscarinic agonist PTAC. PTAC was highly selective for muscarinic receptors, was a partial agonist at muscarinic M2/M4 receptors and an antagonist at M1, M3 and M5 receptors. PTAC was highly active in animal models predictive of antipsychotic behavior including inhibition of conditioned avoidance responding in rats and blockade of apomorphine-induced climbing behavior in mice. d-Amphetamine-induced Fos expression in rat nucleus accumbens was inhibited by PTAC, thus directly demonstrating the ability of PTAC to modulate DA activity. In electrophysiological studies in rats, PTAC acutely inhibited the firing of A10 DA cells and after chronic administration decreased the number of spontaneously firing DA cells in the A10 brain area. However, PTAC did not appreciably alter the firing of A9 DA cells. Thus, PTAC appears to have novel antipsychotic-like activity and these data suggest that muscarinic compounds such as PTAC may represent a new class of antipsychotic agents.  相似文献   

18.
Studies suggest that the omega-3 fatty acid supplementation may be beneficial in reducing symptom severity in schizophrenia. The mechanism(s) underlying the clinical effect is not known. Serotonin (5-HT) has been implicated in the pathophysiology of schizophrenia and in the mechanism of some antipsychotic agents. 5-HT receptors are known to be modified by omega-3 fatty acids. We examined whether supplementation with the omega-3 fatty acid eicosapentaenoic acid (EPA)-modified 5-HT amplified ADP-induced platelet aggregation in patients with schizophrenia. Two grams of ethyl-EPA was administered daily for 6 months supplementally to ongoing antipsychotic treatment in 12 patients with chronic schizophrenia, using an open-label design. Red blood cell membrane fatty acids and platelet functions (platelet aggregation and dense granule secretion) were monitored at baseline, 1-, 3- and 6-months. The EPA levels were elevated more than five-fold in RBC membranes of all patients after 3 months supplementation, indicating a high degree of compliance. Consistent with previous reports, there was inhibition of ADP-induced platelet aggregation by EPA supplementation. Moreover, EPA markedly enhanced the 5-HT responsivity as measured by the magnitude of 5-HT amplification on ADP-induced platelet aggregation. Previously, we have demonstrated a significant inverse correlation between 5-HT responsivity and psychosis severity in unmedicated patients with schizophrenia. Taken together, the present data support the notion that EPA may be mediating its therapeutic effects in schizophrenia via modulation of the 5-HT2 receptor complex.  相似文献   

19.
AIMS: Heterotrimeric G proteins play a pivotal role in postreceptor information transduction. These proteins were previously implicated in the pathophysiology and treatment of mood and other neuropsychiatric disorders. Recently we showed that untreated patients with schizophrenia have a significantly elevated dopamine-induced Gs protein function which is correlated with the severity of the psychotic symptoms. In contrast, an inverse picture with reduction in the function and the immunoreactivity of Gs protein was detected in patients with Parkinson's disease. The present study aims at investigating the effect of antipsychotic medications on dopamine-induced Gs protein hyperfunction in schizophrenia comparing the classical antipsychotic haloperidol and the newer antipsychotic clozapine, which is devoid of extrapyramidal side effects, on G protein measures. METHODS: G protein functional measurements coupled to beta-adrenergic, muscarinic, and dopamine receptors were undertaken through bacterial toxin sensitive, agonist enhanced [3H]-Gpp(NH)p binding capacity, substantiated by quantitative measures of Gs alpha, Gi alpha, and G beta subunit proteins through immunoblot analysis in mononuclear leukocytes obtained from patients with schizophrenia under haloperidol, or clozapine treatments in comparison with untreated patients with schizophrenia and healthy volunteers. RESULTS: Dopamine-induced Gs hyperfunction characteristic of untreated patients with schizophrenia was not detected under antipsychotic treatment with either haloperidol or clozapine. Haloperidol caused a significant decrease in Gs function and immunoreactivity below normal levels. The extend of reduction in Gs function was found to be correlated with the intensity of extrapyramidal side effects. The pattern of G protein subunits levels in patients with schizophrenia under haloperidol treatment resembles the one obtained in patients with Parkinson's disease. CONCLUSIONS: In the present study it is shown that G protein measurements in patients with schizophrenia under antipsychotic treatments can be used to biochemically monitor effects of antipsychotic medications in living patients. Moreover, these measurements may be used also for monitoring parkinsonian side effects induced by antipsychotic medications.  相似文献   

20.
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D2 dopamine receptors. N-methyl-d-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D2 dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号