首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

2.
The benzophenone derivative of 1,3-bis(D-mannos-4-yloxy)-2-propylamine (BB-BMPA) has been tested as an exofacial photoaffinity label for the sugar transport systems of human erythrocytes and rat adipocytes. The half-maximal inhibition constants for the reagent are 971 microM in erythrocytes and 536 microM in basal and 254 microM in insulin-treated adipocytes. The photolabelling of erythrocyte membranes is very specific for the 50 kDa transporter peptide and is completely displaced by D-glucose. The exofacial photoaffinity labelling of adipocytes also shows labelling of a 50 kDa transporter peptide, which is displaced by cytochalasin B, but extensive nonspecific labelling of a 75 kDa plasma membrane peptide occurs. The transporter is labelled in insulin-treated cells but not in basal cells which indicates that this in situ labelling technique selectively reveals only those transporters that visit and are active in the plasma membrane during the labelling period. This also indicates that in basal cells transporters do not turn over rapidly. Subcellular redistribution of transporters after the labelling period has been studied. Following incubation and washing at 37 degrees C in the presence of insulin, 30% of the transporters photolabelled at the plasma membrane are internalised and are found in the light microsome fraction of the cell. The proportion of transporter that is observed to be internalised is much greater than can be accounted for by a contamination of the light microsome fraction by plasma membrane. The labelled 50 kDa transporter peptide in the light microsomes is enriched when compared with the carry-over of the 75 kDa nonspecifically labelled plasma membrane peptide. Thus we have obtained direct evidence for transporter translocation.  相似文献   

3.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to identify, the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for D-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable site. If 280 nM (40000 microunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

4.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

5.
Three antipeptide antibodies were prepared by immunizing rabbits with synthesized short peptides corresponding to residues 215-226, 466-479, and 478-492 predicted from the cDNA of both the human hepatoma HepG2 and rat brain glucose transporters. All three antibodies were found to precipitate quantitatively the [3H]cytochalasin B photoaffinity-labeled human erythrocyte glucose transporter. Each antibody also recognized the rat brain protein of Mr 45,000 on immunoblots, and a similar molecular weight protein was labeled with [3H]cytochalasin B in a D-glucose-inhibitable manner, suggesting that this protein is glucose transporter. However, only up to 30% of the labeled rat brain glucose transporters were precipitated, even by repeated rounds of immunoprecipitation. In addition, these antibodies were observed to be unable to immunoprecipitate significantly the [3H]cytochalasin B-labeled rat adipocyte glucose transporter. Further, one-dimensional peptide maps of [3H]cytochalasin B-labeled human erythrocyte and adipocyte glucose transporters generated distinct tryptic fragments. Although Mr 45,000 protein in rat adipocyte low density microsomes was detected on immunoblots and its amount was decreased in insulin-treated cells, the rat adipocyte low density microsomes were much less reactive on immunoblots than the rat brain membranes in spite of the fact that the rat adipocyte low density microsomes contained more [3H]cytochalasin B-labeled glucose transporters. In addition, the ratio of cytochalasin B-labeled glucose transporter per unit HepG2-type glucose transporter mRNA was more than 10-fold higher in rat adipocyte than in rat brain. These results indicate that virtually all the human erythrocyte glucose transporters are of the HepG2 type, whereas this type of glucose transporter constitutes only approximately 30 and 3% of all the glucose transporters present in rat brain and rat adipocyte, respectively; and the rest, of similar molecular weight, is expressed by a different gene.  相似文献   

6.
Treatment of intact human erythrocytes with trypsin had no effect upon either the rate of hexose transport or the binding of cytochalasin B to the transport system. In contrast, proteolysis of inside-out vesicles prepared from human erythrocyte membranes inactivated both hexose transport and cytochalasin B binding. When purified hexose transporter, reconstituted into phospholipid vesicles of undetermined size, was treated with trypsin, approx. 50% of the cytochalasin B binding activity was lost. This loss correlated with a decrease in the amount of the transporter polypeptide, as assayed by gel electrophoresis. These results show that the orientation of the transporter can be established through trypsin treatment in conjunction with cytochalasin B binding. Small unilamellar vesicles containing transporter were prepared by sonication of larger species and by a cycle of cholate solubilization and removal of the detergent. In the former case, the transporter orients almost randomly, whereas in the latter approx. 75% of the transporters have the cytoplasmic domain extemal.  相似文献   

7.
Using isotopic equilibration with [3H]D-glucose and measurement of D-glucose inhibitable cytochalasin B binding, I show that the erythrocytes of embryonic and newborn rats contain D-glucose transporters. On the basis of cytochalasin B binding and the time course of isotopic exchange, the number of transporters in rat embryonic erythrocytes is only 5% of that in human erythrocytes. Antibodies raised against the human erythrocyte glucose transporter were used as a probe to investigate the structural similarity between transporters. On this basis, the polypeptides of the glucose transporter of human erythrocytes and of embryonic rat erythrocytes are similar but not identical; in addition, certain antibodies showed similar reactivity toward the transporter of rat embryonic erythrocytes and that of rat brain. These antibodies, however, react with brain transporters 5 to 10 times better than with those of skeletal muscle and adipocytes suggesting that insulin responsive tissues may have a different type of glucose transporter. The cellular location of glucose transporters in skeletal muscle, determined by immunofluorescence, is on the plasma membrane or very close to the plasma membrane.  相似文献   

8.
Cytochalasin B is a potent inhibitor of mammalian passive glucose transporters. The recent demonstration of sequence similarities between these proteins and several bacterial proton-linked sugar transporters suggested that cytochalasin B might be a useful tool for investigation of the galactose/H+ symport protein (GalP) of Escherichia coli. Equilibrium binding studies using membranes from a GalP-constitutive (GalPc) strain of E. coli revealed a single set of high affinity binding sites for cytochalasin B with a Kd of 0.8-2.2 microM. Binding was inhibited by D-glucose, but not by L-glucose. UV irradiation of the membranes in the presence of [4-3H]cytochalasin B photolabeled principally a protein of apparent Mr 38,000, corresponding to the GalP protein. Labeling was inhibited by greater than 80% in the presence of 500 mM D-glucose or D-galactose, the major substrates of the GalP system. The extent of inhibition of photolabeling by different sugars and sugar analogues showed that the substrate specificity of GalP closely resembles that of the mammalian passive glucose transporters. Structural similarity to the latter was revealed by tryptic digestion of [4-3H]cytochalasin B-photolabeled GalP, which yielded a radiolabeled fragment of apparent Mr 17,000-19,000, similar to that previously reported for the human erythrocyte glucose transporter.  相似文献   

9.
This study describes the biochemical characterization and subcellular distribution of glucose transporters from isolated rat brain cortical microvessels. The D-glucose inhibitable [3H]cytochalasin B binding assay was used to quantitate glucose transporter binding sites in plasma membranes, high-density microsomes and low-density microsomes prepared from basal and insulin-stimulated cells. Incubation with insulin for 30 min increased the number of glucose transporters in the high-density microsomes by around 33% but had no effect on the number of glucose transporters in the plasma membrane or low-density microsomes. Prolonged incubation with insulin (2 h), however, resulted in a small but significant redistribution of glucose transporters to the low-density microsomes. Preincubation of cells with cycloheximide blocked this insulin-induced increase in glucose transporter number, suggesting that this effect of insulin was due to the synthesis of new glucose transport proteins. Specific labeling of glucose transporters was achieved by photoincorporation of [3H]cytochalasin B. Labeled membranes from all fractions contained a single D-glucose inhibitable peak, migrating with a molecular size of 55 kDa on SDS-polyacrylamide gel electrophoresis. Isoelectric focusing of the 55 kDa protein revealed one major peak of D-glucose inhibitable radioactivity focusing at pH 6.0 in all fractions.  相似文献   

10.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

11.
Purified hexose transport protein ("band 4.5") from human erythrocytes, reconstituted in vesicles of its endogenous lipids, displays minima in its circular dichroism (CD) spectrum at 222 and 207 nm, a pattern diagnostic for alpha-helical content of proteins. Upon addition of D-glucose, a saturable increment of +10-12% in negative ellipticity at 222 nm is observed stereospecifically and reproducibly. Addition of L-glucose had no effect on the CD spectrum of the transport protein. Addition of cytochalasin B (CB), a reversible inhibitor of hexose transport, had no effect itself on transporter CD spectra, but restored the spectrum at 222 nm to its original value when added in the presence of D-glucose. The observed D-glucose-induced increase in ordered secondary structure is proposed to result from incorporation into the membrane of a segment of the transport protein originally at a membrane-water interface.  相似文献   

12.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

13.
Human placental microsomes exhibit uptake of d-[3H]glucose which is sensitive to inhibition by cytochalasin B (apparent Ki = 0.78 /gm M). Characterization of [3H]cytochalasin B binding to these membranes reveals a glucose-sensitive site, inhibited by d-glucose with an ED50 = 40 mM. The glucose-sensitive cytochalasin B binding site is found to have a Kd = 0.15μM by analysis according to Scatchard. Solubilization with octylglucoside extracts 60–70% of the glucose-sensitive binding component. Equilibrium dialysis binding of [3H]cytochalasin B to the soluble protein displays a pattern of inhibition by d-glucose similar to that observed for intact membranes, and the measurement of an ED50 = 37.5 mM d-glucose confirms the presence of the cytochalasin B binding component, putatively assigned as the glucose transporter. Further evidence is attained by photoaffinity labelling; ultraviolet-sensitive [3H]cytochalasin B incorporation into soluble protein (Mr range 42 000-68 000) is prevented by the presence of d-glucose. An identical photolabelling pattern is observed for incorporation of [3H]cytochalasin B into intact membrane protein, confirming the usefulness of this approach as a means of identifying the presence of the glucose transport protein under several conditions.  相似文献   

14.
Using the preparation of purified glucose transporter from human erythrocytes as antigen, we have prepared and characterized six monoclonal antibodies. Three of these antibodies have been shown to be to the glucose transporter by several criteria: they immunoprecipitate the transport activity, the cytochalasin B binding activity, and 75% of the protein from the solubilized purified preparation. The remaining three antibodies were shown to recognize the same polypeptide by a Western blot procedure. All of the antibodies reacted with the deglycosylated transporter and are thus against peptide determinants; most bound to the cytoplasmic domain of the transporter. The antibodies exhibited a range of effects on cytochalasin B binding, from slight enhancement to modest inhibition to strong inhibition; for this reason they must bind to at least three different epitopes. Western blot analysis of erythrocyte membranes prepared in the presence of protease inhibitors showed that all six antibodies bound to a polypeptide of average Mr = 55,000. Moreover, by immunological assay this polypeptide accounted for 5.3% of the membranes protein, a value similar to that given by cytochalasin B binding. Thus, the proposal that the native transporter is a Mr = 100,000 polypeptide is highly unlikely. The antibodies also react with the glucose transporter in other human cell types, but not with that in rodent or avian cells.  相似文献   

15.
DEAE-column-purified band 4.5 polypeptides of human erythrocyte membranes are mostly glucose transporters with nucleoside transporters as a minor component. The purpose of the present work was to differentially identify and isolate the nucleoside transporters in band 4.5 free from glucose transporters. Equilibrium binding studies demonstrated that the band 4.5 preparation binds nibrobenzylthioinosine (NBTI), a potent nucleoside transport inhibitor, at two distinct sites, one with a high affinity (dissociation constant, KD of 1 nM) with a small capacity, BT (0.4 nmol/mg protein), and the other with a low affinity (KD of 15 microM) with a large BT (14-16 nmol/mg protein). The BT of the low-affinity site was equal to that of the cytochalasin B binding site in the preparation. A gel-filtration chromatography of band 4.5 photolabeled with [3H]NBTI and [3H]cytochalasin B identified three polypeptides of apparent Mr 55,000, 50,000 and 40,000. Of these, the 55 kDa polypeptide was specifically labeled by cytochalasin B (p55GT), indicating that it is a glucose transporter. Both the 50 and 40 kDa polypeptides were labeled with NBTI at low ligand concentrations (less than 0.1 microM), which was abolished by an excess (20 microM) of nitrobenzylthioguanosine, indicating that they are two forms (p50NT and p40NT, respectively) of the high affinity NBTI binding protein or nucleoside transporter. At higher (not less than 10 microM) NBTI concentrations, however, p55GT was also labeled with NBTI, indicating that the low-affinity NBTI binding is due to a glucose transporter. Treatment of band 4.5 with trypsin reduced the p50NT labeling with a concomitant and stoichiometric increase in the p40NT NBTI labeling without affecting the high-affinity NBTI binding of the preparation. These findings indicate that the nucleoside transporter is slightly smaller in mass than the glucose transporter and that trypsin digestion produces a truncated nucleoside transporter of apparent Mr 40,000 which retains the high-affinity NBTI binding activity of intact nucleoside transporter. Both p55GT and p50 NT were coeluted in a major protein fraction, P1 in the chromatography, while p40NT was eluted separately as a minor protein fraction, P1a. All three polypeptides formed mixed dimers, which were eluted in a fraction PO. We have purified and partially characterized the truncated nucleoside transporter, p40NT. The purified p40NT may be useful for biochemical characterization of the nucleoside transporter.  相似文献   

16.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

17.
Solute interactions with membrane proteins can be analyzed by biomembrane affinity chromatography (BAC), previously applied to the human red cell glucose transporter. As a novel example, frontal BAC analysis of interactions between the nucleoside transport inhibitor nitrobenzylthioinosine (NBTI) and immobilized reconstituted nucleoside and glucose transporters from human red cells revealed two binding sites, presumably corresponding to the two transporters. The affinities and amounts of sites were determined by use of a double rectangular hyperbolic equation. The Kd value for NBTI binding to the nucleoside transporter in egg phospholipid proteoliposomes was 0.38 +/- 0.08 nM (22 degrees C, I = 0.16, pH 7.4), lower than previously reported for reconstituted systems. The molar ratio between the amounts of nucleoside transporter sites for NBTI and glucose transporter sites for cytochalasin B was 4.5 +/- 0.6%.  相似文献   

18.
The properties of the glucose-transport systems in rat adipocytes and hepatocytes were compared in cells prepared from the same animals. Hormones and other agents which cause a large stimulation of 3-O-methylglucose transport in adipocytes were without acute effect in hepatocytes. Hepatocytes displayed a lower affinity for 3-O-methylglucose (20 mM) and alternative substrates than adipocytes (6 mM), whereas inhibitor affinities were similar in both cell types. The concentration and distribution of glucose transporters were determined by Scatchard analysis of D-glucose-inhibitable [3H]cytochalasin B binding to subcellular fractions. In liver, most of the transporters were located in the plasma membrane (42 +/- 5 pmol/mg of protein) with a small amount (4 +/- 3 pmol/mg) in the low-density microsomal fraction ('microsomes'), the reverse of the situation in adipocytes. Glucose transporters were covalently labelled with [3H]cytochalasin B by using the photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate and analysed by SDS/polyacrylamide-gel electrophoresis. A single D-glucose-inhibitable peak with a molecular mass of 40-50 kDa was seen in both plasma membrane and low-density microsomes. This peak was further characterized by isoelectric focusing and revealed a single peak of specific [3H]cytochalasin B binding at pI 6.05 in both low-density microsomes and plasma membrane, compared with peaks at pI 6.4 and 5.6 in adipocyte membranes. In summary: the glucose-transport system in hepatocytes has a lower affinity and higher capacity than that in adipocytes, and is also not accurately modulated by insulin; the subcellular distribution of glucose transporters in the liver suggests that few intracellular transporters would be available for translocation; the liver transporter has a molecular mass similar to that of the adipocyte transporter; the liver glucose transporter exists as a single charged form (pI 6.05), compared with the multiple forms in adipocytes. This difference in charge could reflect a functionally important difference in molecular structure between the two cell types.  相似文献   

19.
We have recently described a monoclonal antibody (1F8) that recognizes a form of glucose transporter unique to fat and muscle (James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Nature 333, 183-185), tissues that respond acutely to insulin by markedly increasing their glucose uptake. Here, we report that rat adipocytes possess two immunologically distinct glucose-transporters: one recognized by 1F8, and one reactive with antibodies raised against the human erythrocyte glucose transporter. Immunoadsorption experiments indicate that these glucose transporters reside in different vesicle populations and that both transporter isoforms translocate from intracellular sites to the plasma membrane in response to insulin. The insulin-regulatable transporter resides in a unique vesicle that comprises 3% or less of the low density microsomes of fat cells and has a limited protein composition that does not include the bulk of another translocatable protein, the insulin-like growth factor II receptor. Immunoprecipitation with 1F8 of microsomal glucose transporters photoaffinity labeled with [3H]cytochalasin B brings down 90% of the label. Similarly, immunoprecipitation with 1F8 of glucose transporters from insulin-stimulated plasma membranes photolabeled with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl-f ors kolin, another transporter-selective reagent, results in 75% of the labeled transporter localized in the immunoprecipitate. Thus, insulin action involves the combined effect of translocation from at least two vesicle pools each containing different glucose transporters. The 1F8-reactive transporter comprises the majority of the total transporter pool that is responsible for the insulin-induced increase in glucose transporter number.  相似文献   

20.
The effect of cold adaptation (4 degrees C) on the in vivo glucose utilization and on the number and properties of the glucose transporters has been studied in brown adipose tissue of normal rats. Glucose utilization was assessed in vivo by the 2-deoxyglucose method. Glucose transporters in plasma and microsomal membranes were quantified by the [3H]cytochalasin B-binding assay. After cold adaptation the in vivo glucose utilization by brown adipose tissue increased 21-fold compared to controls (22 degrees C). The number of glucose transporters in plasma membranes of brown adipose tissue increased from 75 to 436 pmol/g tissue and that of total glucose transporters (plasma + microsomal membranes) from 438 to 754 pmol/g tissue. In addition, cold adaptation increased the Hill coefficient of the plasma membrane transporter for cytochalasin B from 0.90 to 2.03 and decreased the Kd from 100 to 54 nM. This study shows that cold adaptation promotes: a translocation of glucose transporters from an intracellular pool to plasma membranes; an increased number of plasma membrane glucose transporters unaccounted for by the translocation process (e.g. "de novo" synthesis); an increase in the Hill coefficient for cytochalasin B that could also represent changes in the properties of the transporters vis-à-vis glucose, (e.g. positive cooperativity); and a decrease in the Kd value for cytochalasin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号