共查询到20条相似文献,搜索用时 15 毫秒
1.
Migliavacca F Dubini G Pennati G Pietrabissa R Fumero R Hsia TY de Leval MR 《Journal of biomechanics》2000,33(5):549-557
A systemic-to-pulmonary shunt is a connection created between the systemic and pulmonary arterial circulations in order to improve pulmonary perfusion in children with congenital heart diseases. Knowledge of the relationship between pressure and flow in this new, surgically created, cardiovascular district may be helpful in the clinical management of these patients, whose survival is critically dependent on the blood flow distribution between the pulmonary and systemic circulations. In this study a group of three-dimensional computational models of the shunt have been investigated under steady-state and pulsatile conditions by means of a finite element analysis. The model is used to quantify the effects of shunt diameter (D), curvature, angle, and pulsatility on the pressure-flow (DeltaP-Q) relationship of the shunt. Size of the shunt is the main regulator of pressure-flow relationship. Innominate arterial diameter and angles of insertion have less influence. Curvature of the shunt results in lower pressure drops. Inertial effects can be neglected. The following simplified formulae are derived: DeltaP=(0. 097Q+0.521Q(2))/D(4) and DeltaP=(0.096Q+0.393Q(2))/D(4) for the different shunt geometries investigated (straight and curved shunts, respectively). 相似文献
2.
Friedman M 《Proceedings. Biological sciences / The Royal Society》2012,279(1730):944-951
Giant suspension feeders such as mysticete whales, basking and whale sharks, and the extinct (indicated by ‘†’) †pachycormiform teleosts are conspicuous members of modern and fossil marine vertebrate faunas. Whether convergent anatomical features common to these clades arose along similar evolutionary pathways has remained unclear because of a lack of information surrounding the origins of all groups of large-bodied suspension feeders apart from baleen whales. New investigation reveals that the enigmatic ray-finned fish †Ohmdenia, from the Lower Jurassic (Toarcian, 183.0–175.6 Ma) Posidonia Shale Lagerstätte, represents the immediate sister group of edentulous †pachycormiforms, the longest lived radiation of large vertebrate suspension feeders. †Ohmdenia bisects the long morphological branch leading to suspension-feeding †pachycormiforms, providing information on the sequence of anatomical transformations preceding this major ecological shift that can be compared to changes associated with the origin of modern mysticetes. Similarities include initial modifications to jaw geometry associated with the reduction of dentition, followed by the loss of teeth. The evolution of largest body sizes within both radiations occurs only after the apparent onset of microphagy. Comparing the fit of contrasting evolutionary models to functionally relevant morphological measurements for whales and †pachycormiform fishes reveals strong support for a common adaptive peak shared by suspension-feeding members of both clades. 相似文献
3.
The fluid mechanics of bolus ejection from the oral cavity 总被引:1,自引:0,他引:1
The squeezing action of the tongue against the palate provides driving forces to propel swallowed material out of the mouth and through the pharynx. Transport in respose to these driving forces, however, is dependent on the material properties of the swallowed bolus. Given the complex geometry of the oral cavity and the unsteady nature of this process, the mechanics governing the oral phase of swallowing are not well understood. In the current work, the squeezing flow between two approaching parallel plates is used as a simplified mathematical model to study the fluid mechanics of bolus ejection from the oral cavity. Driving forces generated by the contraction of intrinsic and extrinsic lingual muscles are modeled as a spatially uniform pressure applied to the tongue. Approximating the tongue as a rigid body, the motion of tongue and fluid are then computed simultaneously as a function of time. Bolus ejection is parameterized by the time taken to clear half the bolus from the oral cavity, t1/2. We find that t1/2 increases with increased viscosity and density and decreases with increased applied pressure. In addition, for low viscosity boluses (μapproximately 1000 cP), viscosity dominates. A transition region between these two regimes is found in which both properties affect the solution characteristics. The relationship of these results to the assessment and treatment of swallowing disorders is discussed. 相似文献
4.
5.
Bong Chung Sangho Kim Paul C. Johnson Aleksander S. Popel 《Computer methods in biomechanics and biomedical engineering》2013,16(4):385-397
Aggregate formation of red blood cells (RBCs) in a postcapillary venular bifurcation is investigated with three-dimensional computer simulations using the Chimera grid method. Interaction energy between the RBCs is modelled by a depletion interaction theory; RBCs are modelled as rigid oblate ellipsoids. The cell–cell interactions of RBCs are strongly dependent on vessel geometry and shear rates. The experimental data on vessel geometry, pseudoshear rates, and Dextran concentration obtained in our previous in vivo RBC aggregation study in postcapillary venules of the rat spinotrapezius muscle were used to simulate RBC aggregation. The computational results were compared to the experimental results from the in vivo study. The results show that cells have a larger tendency to form an aggregate under reduced flows. Aggregate formation also depends on the angle and location of the cells before they enter the bifurcation region. Comparisons with experimental data are discussed. 相似文献
6.
Ene-Iordache B Mosconi L Remuzzi G Remuzzi A 《Journal of biomechanical engineering》2001,123(3):284-292
7.
8.
Intranasal drug delivery has attracted significant attention because of the opportunity to deliver systemic drugs directly to the blood stream. However, the mucociliary clearance poses a challenge in gaining high efficacy of intranasal drug delivery because cilia continuously carry the mucus blanket towards the laryngeal region. To better understand mucus flow behaviour on the human nasal cavity wall, we present computational model development, and evaluation of mucus motion on a realistic nasal cavity model reconstructed from CT-scans. The model development involved two approaches based on the actual nasal cavity geometry namely: (i) unwrapped-surface model in 2D domain and (ii) 3D-shell model. Conservation equations of fluid motion were applied to the domains, where a mucus production source term was used to initiate the mucus motion. The analysis included mucus flow patterns, virtual saccharin tests and quantitative velocity magnitude analysis, which demonstrated that the 3D-shell model results provided better agreement with experimental data. The unwrapped-surface model also suffered from mesh-deformations during the unwrapping stage and this led to higher mucus velocity compared to experimental data. Therefore, the 3D-shell model was recommended for future mucus flow simulations. As a first step towards mucus motion modelling this study provides important information that accurately simulates a mucus velocity field on a human nasal cavity wall, for assessment of toxicology and efficacy of intranasal drug delivery. 相似文献
9.
Computational fluid dynamics (CFD) has emerged as a useful tool for the prediction of airflow and particle transport within the human lung airway. Several published studies have demonstrated the use of Eulerian finite-volume CFD simulations coupled with Lagrangian particle tracking methods to determine local and regional particle deposition rates in small subsections of the bronchopulmonary tree. However, the simulation of particle transport and deposition in large-scale models encompassing more than a few generations is less common, due in part to the sheer size and complexity of the human lung airway. Highly resolved, fully coupled flowfield solution and particle tracking in the entire lung, for example, is currently an intractable problem and will remain so for the foreseeable future. This paper adopts a previously reported methodology for simulating large-scale regions of the lung airway (Walters, D. K., and Luke, W. H., 2010, "A Method for Three-Dimensional Navier-Stokes Simulations of Large-Scale Regions of the Human Lung Airway," ASME J. Fluids Eng., 132(5), p. 051101), which was shown to produce results similar to fully resolved geometries using approximate, reduced geometry models. The methodology is extended here to particle transport and deposition simulations. Lagrangian particle tracking simulations are performed in combination with Eulerian simulations of the airflow in an idealized representation of the human lung airway tree. Results using the reduced models are compared with those using the fully resolved models for an eight-generation region of the conducting zone. The agreement between fully resolved and reduced geometry simulations indicates that the new method can provide an accurate alternative for large-scale CFD simulations while potentially reducing the computational cost of these simulations by several orders of magnitude. 相似文献
10.
11.
Lars-Ove Loo Rutger Rosenberg 《Journal of experimental marine biology and ecology》1989,130(3):253-276
The open exposed Laholm Bay in the Kattegat is eutrophicated through riverine input, mainly of N. The benthic macrofauna down to 10 m depth (60 km2) is dominated by the suspension-feeding bivalves Cardium edule and Mya arenaria. To estimate the seasonal and annual consumption of seston by the suspension-feeders in Laholm Bay, we carried out three sets of observations. (1) The abundance and biomass of the macrofauna in this depth interval were assessed along eight transects. (2) The secondary production of the two bivalves was estimated over a 10-month period in two sampling squares. (3) The filtration rate of C. edule was determined in natural seawater in laboratory experiments during different seasons. The bivalves can in theory filter all of the water volume down to 10 m in 3 days and, thus, make a significant impact on the phytoplankton concentration. In our study, however, they filtered only approximately half of their potential feeding capacity, perhaps because food availability was low due to low turnover close to the bottom or due to physical disturbance. The majority of the phytoplankton is exported from the bay. Bivalve abundance, biomass, production and growth rate were moderate and generally lower than in adjacent areas to the north. In autumn, the bivalves consumed >90% of the seston in comparison with net-zooplankton consumption. An energy-flow diagram for the bivalves is presented including estimates of bivalve N excretion and biodeposition. 相似文献
12.
The population biology and secondary production of the bivalves Anomalocardia brasiliana (Gmelin, 1791) and Diplodonta punctata (Say, 1822) were studied on a sheltered beach on the southeast coast of Brazil (Flexeiras Beach) between December 2006 and February 2009. Six transects were established perpendicular to the shoreline. Along each transect, sampling units (SUs) were extracted every 3?m, with a 0.04?m2 metal sampler and to a depth of 25?cm, from the base of the boulder wall until 9?m below the waterline during low tide. The abundances of A. brasiliana and D. punctata were inversely correlated over time. The populations differed in several aspects: (1) A. brasiliana occupied mainly the upper levels, whereas D. punctata occupied the lower level of the beach; (2) total abundance, growth rate, and production were higher for A. brasiliana; and (3) mortality and turnover rate were higher for D. punctata. The differences in growth, mortality, and production parameters may be associated with a difference in the species’ abilities to exploit resources. 相似文献
13.
De Backer JW Vos WG Devolder A Verhulst SL Germonpré P Wuyts FL Parizel PM De Backer W 《Journal of biomechanics》2008,41(1):106-113
The effect of a bronchodilator in asthmatics is only partially described by changes in spirometric values since no information on regional differences can be obtained. Imaging techniques like high-resolution computed tomography (HRCT) provide further information but lack detailed information on specific airway responses. The aim of the present study was to improve the actual imaging techniques by subsequent analysis of the imaging data using computational fluid dynamics (CFD). We studied 14 mild to moderately severe asthmatics. Ten patients underwent HRCT before and 4h after inhalation of a novel long acting beta(2) agonist (LABA) that acts shortly after inhalation. Four patients were studied for chronic effects and underwent CT scans twice after adequate wash-out of bronchodilators. In the active group, a significant bronchodilator response was seen with a forced expiratory volume in 1s (FEV1) increase of 8.78 +/- -6.27% pred vs -3.38 +/- 6.87% pred in the control group. The changes in FEV1 correlated significantly with the changes in distal airway volume (r = 0.69, p = 0.007), total airway resistance (r = -0.73, p = 0.003) and distal airway resistance (r = -0.76, p = 0.002) as calculated with the CFD method. The changes in distal R(aw) were not fully homogeneous. In some patients with normal FEV1 at baseline, CFD-based changes in R(aw) were still detectable. We conclude that CFD calculations, based on airway geometries of asthmatic patients, provide additional information about changes in regional R(aw). All changes in the CFD-based calculated R(aw) significantly correlate with the observed changes in spirometric values therefore validating the CFD method for the studied application. 相似文献
14.
Antonino Rinaudo Giuseppe D'Ancona Roberto Baglini Andrea Amaducci Fabrizio Follis Michele Pilato 《Computer methods in biomechanics and biomedical engineering》2013,16(10):1066-1071
Coarctation of aorta (CoA) is a narrowing of the aorta leading to a pressure gradient (ΔP) across the coarctation, increased afterload and reduced peripheral perfusion pressures. Indication to invasive treatment is based on values of maximal (systolic) trans-coarctation ΔP. A computational fluid dynamic (CFD) approach is herein presented for the non-invasive haemodynamic assessment of ΔP across CoA. Patient-specific CFD simulations were created from contrast-enhanced computed tomography (CT) and appropriate flow boundary conditions. Computed ΔP was validated with invasive intravascular trans-CoA pressure measurements. Haemodynamic indices, including pressure loss coefficient (PLc), time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI), were also quantified. CFD-estimated ΔP values were comparable to the invasive ones. Moreover, the aorta proximal to CoA was exposed to altered TAWSS and OSI suggesting hypertension. PLc was found as a further geometric marker of CoA severity. Finally, CFD-estimated ΔP confirmed a significant reduction after percutaneous balloon dilatation and stenting of the CoA in one patient (e.g. from ΔP~52 mmHg to ΔP~3 mmHg). The validation of the ΔP computations with catheterisation measurements suggests that CFD simulation, based on CT-derived anatomical data, is a useful tool to readily quantify CoA severity. 相似文献
15.
Liu H 《Integrative and comparative biology》2002,42(5):1050-1059
Characterized by complex geometry and complicated dynamic process,biological fluid dynamics in swimming and flying is usuallyof large scale vortex flows with four-dimensional nature, namely,spatial three-dimensional and one-dimensional in time. Conventionaltheories for understanding power and energetics in swimmingand flying rely exclusively on the consistent potential flowformulation in qualitatively analyzing the physics as well asthe observations and measurements in visualizing the flows soas to support the theories. In the present paper we addressa new paradigm of the so-called, simulation-based biologicalfluid dynamics that can digitize and visualize swimming andflying by using computational mechanical modeling of the biologicalfluid dynamics through faithful reconstruction of morphologyand realistic representation of kinematics of an individualobject. We demonstrate an integrated computational system asa baseline for the simulation-based biological fluid dynamics,which involves four subsystems of the morphological modeling,the kinematic modeling, the computational fluid dynamic modeling,and the post-processing for visualization. Applications of arealistic model of insect flapping flight and an extensive studyon the Micro Air Vehicle are then presented and discussed. 相似文献
16.
The purpose of this research was to further investigate the hydrodynamics of the United States Pharmacopeia (USP) paddle dissolution
apparatus using a previously generated computational fluid dynamics (CFD) model. The influence of paddle rotational speed
on the hydrodynamics in the dissolution vessel was simulated. The maximum velocity magnitude for axial and tangential velocities
at different locations in the vessel was found to increase linearly with the paddle rotational speed. Path-lines of fluid
mixing, which were examined from a central region at the base of the vessel, did not reveal a region of poor mixing between
the upper cylin-drical and lower hemispherical volumes, as previously speculated. Considerable differences in the resulting
flow patterns were observed for paddle rotational speeds between 25 and 150 rpm. The approximate time required to achieve
complete mixing varied between 2 to 5 seconds at 150 rpm and 40 to 60 seconds at 25 rpm, although complete mixing was achievable
for each speed examined. An analysis of CFD-generated velocities above the top surface of a cylindrical compact positioned
at the base of the vessel, below the center of the rotating paddle, revealed that the fluid in this region was undergoing
solid body rotation. An examination of the velocity boundary layers adjacent to the curved surface of the compact revealed
large peaks in the shear rates for a region within∼3 mm from the base of the compact, consistent with a ‘grooving’ effect,
which had been previously seen on the surface of compacts following dissolution, associated with a higher dissolution rate
in this region. 相似文献
17.
The origin of inositol in the rete testis fluid of the ram 总被引:1,自引:0,他引:1
18.
Winson X. Chen Eric K. W. Poon Nicholas Hutchins Vikas Thondapu Peter Barlis Andrew Ooi 《Computer methods in biomechanics and biomedical engineering》2017,20(6):671-681
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup. 相似文献
19.
20.
搅拌桨是高好氧高黏度微生物发酵实现高效反应必不可少的因素之一,不同搅拌桨组合对发酵过程的影响十分重要。威兰胶是由产碱杆菌在高耗氧高粘度发酵体系下合成的胞外微生物多糖,广泛应用于水泥、石油、油墨、食品等行业中。本研究借助于计算流体力学(Computational fluid dynamics,CFD)的方法,以威兰胶发酵液体系为研究体系,研究了6种不同搅拌桨组合在反应器内流体速率分布、剪切速率、和气含率等参数。将模拟效果较好的3种组合用于威兰胶发酵过程。研究表明MB-4-6搅拌桨组合对改善发酵罐内部的溶氧及流场分布效果最明显,威兰胶产量水平提高了13%。同时在该组合下威兰胶的产品粘度得到有效提高。 相似文献