共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of postmitotic reassembly of the nucleolus 总被引:17,自引:0,他引:17
Mammalian cell nucleoli disassemble at the onset of M-phase and reassemble during telophase. Recent studies showed that partially processed preribosomal RNA (pre-rRNA) is preserved in association with processing components in the perichromosomal regions (PRs) and in particles called nucleolus-derived foci (NDF) during mitosis. Here, the dynamics of nucleolar reassembly were examined for the first time in living cells expressing fusions of the processing-related proteins fibrillarin, nucleolin, or B23 with green fluorescent protein (GFP). During telophase the NDF disappeared with a concomitant appearance of material in the reforming nuclei. Prenucleolar bodies (PNBs) appeared in nuclei in early telophase and gradually disappeared as nucleoli formed, strongly suggesting the transfer of PNB components to newly forming nucleoli. Fluorescence recovery after photobleaching (FRAP) showed that fibrillarin-GFP reassociates with the NDF and PNBs at rapid and similar rates. The reentry of processing complexes into telophase nuclei is suggested by the presence of pre-rRNA sequences in PNBs. Entry of specific proteins into the nucleolus approximately correlated with the timing of processing events. The mitotically preserved processing complexes may be essential for regulating the distribution of components to reassembling daughter cell nucleoli. 相似文献
2.
Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells 总被引:12,自引:0,他引:12
Leung AK Gerlich D Miller G Lyon C Lam YW Lleres D Daigle N Zomerdijk J Ellenberg J Lamond AI 《The Journal of cell biology》2004,166(6):787-800
One of the great mysteries of the nucleolus surrounds its disappearance during mitosis and subsequent reassembly at late mitosis. Here, the relative dynamics of nucleolar disassembly and reformation were dissected using quantitative 4D microscopy with fluorescent protein-tagged proteins in human stable cell lines. The data provide a novel insight into the fates of the three distinct nucleolar subcompartments and their associated protein machineries in a single dividing cell. Before the onset of nuclear envelope (NE) breakdown, nucleolar disassembly started with the loss of RNA polymerase I subunits from the fibrillar centers. Dissociation of proteins from the other subcompartments occurred with faster kinetics but commenced later, coincident with the process of NE breakdown. The reformation pathway also follows a reproducible and defined temporal sequence but the order of reassembly is shown not to be dictated by the order in which individual nucleolar components reaccumulate within the nucleus after mitosis. 相似文献
3.
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci. 相似文献
4.
在高等动物细胞开放式有丝分裂过程中,细胞核膜会发生高度有序的周期性去组装和装配的动态变化。近年的研究结果表明是LEM家族蛋白成员通过与BAF因子相互作用介导了内核膜、核纤层蛋白以及染色体之间的相互作用。LEM蛋白、核纤层蛋白以及BAF因子直接相互作用形成的三元复合体在结构与功能上是相互依赖的,在此结构与功能上组成的网络体系是形成细胞核的一些基本生物学过程的重要条件。该复合体在调控有丝分裂M期后期和末期染色体的正常分离、有丝分裂后核膜的重组装,细胞分裂间期细胞核及核膜形态维持,调控DNA复制和DNA损伤修复,调节基因表达和信号通路以及逆转录病毒感染等方面发挥着重要的生物学功能。并且LEM蛋白相关基因的异常对核纤层疾病和肿瘤的发生发展具有重要的影响。文章主要针对LEM蛋白家族成员的结构以及功能研究进展进行了详细的综述。 相似文献
5.
L F Jiménez-García L I Rothblum H Busch R L Ochs 《Biology of the cell / under the auspices of the European Cell Biology Organization》1989,65(3):239-246
Using in situ hybridization and immunocytochemistry during interphase and mitosis, we have compared the distribution of ribosomal DNA (rDNA) to that of the nucleolar proteins fibrillarin and RNA polymerase I. During interphase, nucleolar proteins were localized at sites throughout the nucleolus while the bulk of rDNA was localized in a single restricted nucleolar area. During metaphase and anaphase, all six NORs were detected by in situ hybridization, Ag-staining, or by the immunolocalization of RNA polymerase I. During telophase, rDNA and RNA polymerase I were found in a distinct subset of the prenucleolar bodies (PNBs) which obviously must contain the nucleolar organizers. Other numerous PNBs are smaller in size and do not contain detectable amounts of rDNA or RNA polymerase I. Therefore, reconstruction of the nucleolus originates in telophase-specific domains which contain both rDNA and RNA polymerase I. 相似文献
6.
7.
极光(aurora)激酶在细胞有丝分裂和肿瘤形成中的重要功能 总被引:4,自引:0,他引:4
极光激酶(aurora kinases)是负责调控细胞有丝分裂的一类重要的丝氨酸/苏氨酸激酶。在不同的模式生物中,极光激酶各家族成员的结构和功能都高度保守。近年来,随着极光激酶相关研究的不断深入,人们逐渐认识到极光激酶在细胞有丝分裂以及肿瘤形成中的重要功能。在细胞有丝分裂中,极光激酶参与了诸如中心体成熟分离、纺锤体组装和维持、染色体分离以及胞质分裂等多个事件。异常表达的极光激酶往往会导致细胞在有丝分裂的过程中出现大量的异常现象。此外,极光激酶还参与了肿瘤形成的过程,已经发现一些靶向作用于极光的小分子具有显著的抑癌作用。本文围绕哺乳动物的三种极光激酶,重点讨论了它们在细胞有丝分裂中的动态定位、生物学功能以及时空上的调节方式,并分析了异常表达的极光激酶参与肿瘤形成的可能途径,提出了肿瘤治疗的新思路。 相似文献
8.
9.
Abstract. We report two situations in which the polarity of gravitropism of single protonemal cells of the moss Physcomitrella patens is reversed. Dark-grown protonemata of wild-type P. patens grow negatively gravitropically. Time-lapse video-microscopy reveals that a temporary reversal of growth polarity occurs during mitotic division which is independent of the cells' growth rate. A transitory reversal of growth direction is also observed when the unidirectional gravitropic stimulus is interrupted by a period of growth on a clinostat. A third situation, in which a mutant class responds by growing positively gravitropically, has been described previously (Jenkins, Courtice & Cove, 1986). These observations are discussed in terms of possible mechanisms for cell morphogenesis and tropic growth. 相似文献
10.
11.
Pauline Vandame Corentin Spriet Dave Trinel Armance Gelaude Katia Caillau Coralie Bompard 《Cell cycle (Georgetown, Tex.)》2014,13(20):3232-3240
The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells. 相似文献
12.
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules. 相似文献
13.
Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis 总被引:10,自引:0,他引:10
Apoptosis is characterized by a complex and remarkably ordered choreography of events consisting of the preparatory and execution steps that all culminate in disposal of the cell remnants. The disposal occurs in a manner that is the least destructive to the tissue: the remains of nuclear chromatin and cytoplasm are packaged in apoptotic bodies which are then phagocytized by neighboring live cells without invoking inflammatory or autoimmune response. In the present study we describe that in the course of apoptosis cellular RNA becomes sequestered and packaged into granules and then into apoptotic bodies, separately from DNA. This separation, which appears to be initiated by the nucleolar segregation, was observed in HL-60 cells that were undergoing spontaneous apoptosis in cultures or were treated with the DNA-damaging drug, DNA topoisomerase I inhibitor camptothecin (CPT), or with the cell death ligand, tumor necrosis factor-alpha. RNA separation was also observed in apoptotic MCF-7 cells following treatment with CPT. RNA and DNA in apoptotic cells were identified histochemically, by their differential stainability with pyronin Y and Hoechst 33342 fluorochromes, respectively, and immunocytochemically, by labeling the RNA with BrU for various periods of time and detection of the incorporated precursor with fluoresceinated anti-BrU mAb; DNA was counterstained with 7-aminoactinomycin D. Over 90% of apoptotic bodies that contained RNA had no detectable DNA and vice versa, the apoptotic bodies containing DNA had no detectable RNA. Packaging RNA and DNA into separate apoptotic bodies suggests that the phagosomes of the cells that ingest these particles are specialized: some of them are responsible for DNA degradation, others for degradation of RNA. Such specialization may facilitate heterophagic degradation of nucleic acids during apoptosis. 相似文献
14.
Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because labeled microtubules and microfilaments gradually decreased, the rate of cytoskeleton disassembly was greater than the rate of cytoskeleton assembly. Hence, ooplasmic segregation was accompanied by the rapid turnover of cytoskeletal components. Co-distribution of F- and-G-actin during mid and late interphase may favor polymer-monomer interchange. We conclude that cytoskeleton reorganization during foundation of cytoplasmic domains can be conveniently studied in the live leech zygote after microinjection of labeled precursors. 相似文献
15.
E. V. Gavrilova I. S. Kuznetsova N. I. Enukashvily E. M. Noniashvili A. P. Dyban O. I. Podgornaya 《Cell and Tissue Biology》2009,3(3):213-221
Nucleolar precursor bodies (NPB) are discrete entities in zygotic pronuclei and in the nuclei of two-cell mouse embryos. Centromeric (CEN) and pericentromeric (periCEN) chromosome regions are associated with the chromatin layer surrounding NPB. Four types of satellite DNA (satDNA) are currently known in Mus musculus, including mouse minor satellite 4 (MiSat), mouse satellite 3 (MS3) in the CEN region, mouse major satellite (MaSat), and mouse satellite (MS4) in the periCEN region. We determined the localization of these four types of mouse satDNA and associated proteins (RNA-helicase p68, SMC3, Rad21 subunits of the cohesin complex and SYCP3 subunit of the synaptonemal complex) in respect to NPB. Partially flattened nuclei of the one- and two-cell intact embryos and embryos treated with okadaic acid (OA) were used. It was found that different satDNA are localized in different regions at the NPB surface: periCEN MaSat occupied almost the whole NPB surface; CEN MiSat, MS3 and periCEN MS4 were located more peripherally. All four satDNA did not cover the entire NPB area, which indicates the presence of other DNA sequences involved in the association with NPB periphery. Among the proteins probed, RNA-helicase p68 and components of multiprotein cohesin and synaptonemal complexes (SCs) showed the most prominent colocolization with NPB. Our results support the idea that NPB are chromocenter precursors. 相似文献
16.
害虫区域性生态调控的理论、方法及实践 总被引:11,自引:2,他引:11
本文在分析害虫生态调控的生态学基础上 ,论述了害虫区域性生态调控的原理与方法 ,并以华北棉田害虫管理实践为例 ,介绍了害虫区域性生态调控的实施过程 相似文献
17.
Marcin J. Suskiewicz 《BioEssays : news and reviews in molecular, cellular and developmental biology》2024,46(3):2300178
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications. 相似文献
18.
Rudolf A. Römer Stephen A. Wells J. Emilio Jimenez‐Roldan Moitrayee Bhattacharyya Saraswathi Vishweshwara Robert B. Freedman 《Proteins》2016,84(12):1776-1785
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc. 相似文献
19.
北草蜥卵孵化过程中物质和能量的动态 总被引:2,自引:0,他引:2
研究北草蜥卵在温、湿度分别为 3 0℃、 -12kPa的条件下 ,孵化过程中物质和能量的动用以及胚胎生长。孵化过程中 ,每隔 5天称量卵重。孵化第 10天起 ,每隔 5天解剖来自不同窝的卵 15枚 ,并分离成胚胎、卵壳和卵黄三组分。孵出幼体称重后冰冻处死 ,之后解剖分离成躯干、剩余卵黄和脂肪体。所有材料 65℃烘至恒重 ,用索氏脂肪提取器测定脂肪含量 ,氧弹热量计测定能值 ,马福炉测定灰分含量。本研究北草蜥卵的孵化期为 2 8 1天。卵孵化时从基质中吸水导致重量增加。卵孵化 0 -10天、 11-2 0天、 2 1-2 5天、 2 6-2 8天 ,胚胎分别利用新生卵能量的 12 %、 3 5%、 3 7%和 15%。 0 -10天 ,胚胎生长较缓慢 ;10天后生长迅速。卵孵化过程中 ,干物质、非极性脂肪和能量的转化率分别为 69 7%、 3 7 0 %和 53 1%。初生幼体的能量组分为 :躯干95 2 % ,脂肪 2 4% ,剩余卵黄 2 4%。本研究结果显示 :北草蜥从新生卵到孵出幼体的物质和能量转化率较低 ;胚胎发育所需要的无机物来自卵黄和卵壳 相似文献