首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the pH sensitivity of the H+/organic cation antiport system in brush-border membranes isolated from rat renal cortex. The uptake of tetraethylammonium, a typical organic cation, in the absence of an H+ gradient had a marked pH dependence with an optimum pH of 7.0, while the uptake of p-aminohippurate, an organic anion, and D-glucose was almost consistent in the pH range of 6.0-8.0. The decreased tetraethylammonium uptake by brush-border membrane vesicles, suspended in an acidic pH buffer or an alkaline pH buffer, was completely recovered by subsequent treatment of the vesicles with a pH 7.0 buffer. The pH sensitivity of tetraethylammonium uptake was not changed in the presence of either carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore, or valinomycin (voltage-clamped condition). Kinetic parameters of tetraethylammonium uptake were changed in a pH-dependent manner, although Eadie-Hofstee plots of tetraethylammonium uptake were linear in the pH range of 6.0-8.0, indicating the existence of one mode of transport system at various pH values. At an acidic pH, the Km was increased without any change in Vmax value, compared with the values at pH 7.0. On the other hand, at an alkaline pH, the Vmax was decreased without a change in Km value. These results suggest that the H+/organic cation antiport system in renal brush-border membranes is very sensitive to pH (optimum pH of 7.0), in contrast to organic anion and D-glucose transport systems, and that pH is an important factor to regulate the activity of the H+/organic cation antiport system, as well as H+ gradient (a driving force).  相似文献   

2.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

3.
J S Jung  Y K Kim    S H Lee 《The Biochemical journal》1989,259(2):377-383
Transport of [14C]tetraethylammonium (TEA), an organic cation, was studied in brush-border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit kidney cortex. In BBMV, the presence of an outwardly directed H+ gradient induced a marked stimulation of TEA uptake against its concentration gradient (overshoot phenomenon), whereas a valinomycin-induced inside-negative potential had no effect on TEA uptake. In BLMV, TEA uptake was significantly stimulated by the presence of an outwardly directed H+ gradient and by an inside-negative potential, but the effect of H+ gradient was absent when the vesicles were chemically 'voltage clamped'. In BBMV, internal H+ stimulated TEA uptake in a non-competitive manner by binding at a site with apparent pKa of 6.87. External H+ inhibited TEA uptake through a direct interaction with the putative H+/organic-cation exchanger at a site with apparent pKa of 6.78. Changing external pH while maintaining the pH gradient constant produced a result similar to that obtained by changing external pH alone. Increasing external H+ showed a mixed-type inhibition of TEA uptake. These results suggest that in the rabbit TEA transport across the basolateral membranes is driven by an inside-negative potential and that transport across the brush-border membrane is driven by a H+ gradient via an electroneutral H+/TEA antiport system.  相似文献   

4.
The effects of the histidine modifier, diethyl pyrocarbonate (DEPC), on brush-border membrane transport systems were studied in rat kidney. DEPC caused a strong inhibition of sodium-dependent phosphate and D-glucose uptake. Phosphate uptake remained linear up to 10 s in control and DEPC-treated membrane vesicles. The D-glucose carrier was more sensitive than the phosphate carrier with half-times of inhibition being 4 and 7 min, respectively. Sodium-independent phosphate and D-glucose uptake remained unaffected by DEPC. Intravesicular volume and two enzyme activities endogenous to the luminal membrane (alkaline phosphatase and aminopeptidase M) remained unaffected by DEPC. Increasing the preincubation pH from 5 to 9 increased phosphate transport inhibition caused by DEPC from 73 to 88% in the presence of DEPC. Hydroxylamine was able to completely reverse phosphate uptake inhibition by DEPC (100%), but only partially reversed the D-glucose uptake inhibition (16%). Sodium or substrate (D-glucose or phosphate) in the preincubation media were unable to protect their respective carriers from DEPC. Sodium-dependent transport of L-glutamine, L-phenylalanine, L-leucine, L-alanine, L-glycine, beta-alanine and L-proline were inhibited at different levels ranging from 70 to 90%. Three transport processes were found insensitive to DEPC modification: L-glutamate, L-lysine and D-fructose. None of the amino acid transporters was protected against DEPC by sodium and/or their respective substrates. Sodium influx was inhibited by DEPC (47%) in the absence of any substrate. Our results show a differential sensitivity of sodium-dependent transporters to DEPC and suggest an important role for histidine residues in the molecular mechanisms of these transporters. More experiments are in progress to further characterize the residue(s) involved in these transport inhibitions by DEPC.  相似文献   

5.
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.  相似文献   

6.
Cadmium (Cd) uptake and secretion across the apical membrane of epithelial cells was studied using LLC-PK1 cells cultured on Petri dishes and permeable membranes, respectively. Cd accumulation in cells from the apical medium was decreased by low temperature and metabolic inhibitors. A saturable tendency was observed between initial Cd accumulation and increased concentrations of Cd in the apical medium at 37 degrees C, but not at 4 degrees C. Co-incubation with ZnCl2 or CuCl2 competitively decreased Cd accumulation at 37 degrees C. A decrease in the pH of the apical medium markedly decreased Cd accumulation. Pretreatment of cells with an inorganic anion-exchange inhibitor significantly decreased Cd uptake at pH 7.4 in the presence of bicarbonate, but only marginally in its absence. A decrease in the pH of the apical medium increased the secretory (basolateral-to-apical) transport of Cd, with a concomitant decrease in the cellular accumulation of Cd. Co-incubation with Cd and tetraethylammonium, a typical substrate of the organic cation transporter, decreased Cd transport, with a concomitant increase in cellular Cd accumulation. The uptake and secretion of Cd across the apical membrane appear to be partly mediated via an inorganic anion exchanger and a H+ antiport of the organic cation transport system, respectively. Therefore, a decrease in pH of the apical medium markedly decreases Cd accumulation, possibly as a result of not only the decrease in Cd uptake via an inorganic anion exchanger, but also the increase in Cd secretion via the Cd2+/H+ antiport. Further evidence of the antiport was obtained from experiments using brush border membrane vesicles isolated from rat kidney and small intestine. In addition, passive diffusion of Cd appears to be decreased by low temperature and a decrease in pH.  相似文献   

7.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

8.
Possible involvement of histidine residues and sulfhydryl groups in the function of the intestinal brush-border membrane (BBM) transporter of biotin was investigated. This was done by examining the effects of pretreatment of BBM vesicle (BBMV) isolated from rabbit intestine with the histidine-specific reagent diethyl pyrocarbonate (DEPC) and the sulfhydryl group-specific reagents p-chloromercuribenzenesulfonic acid (p-CMBS) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) on carrier-mediated biotin transport. Pretreatment of BBMV with DEPC caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with DEPC provided significant protection to biotin transport. Treatment of DEPC-pretreated vesicles with the reducing agents dithiothreitol and 2,3-dimercaptopropanol failed to reverse the inhibitory effect of DEPC on biotin transport. The inhibitory effect of DEPC was found to be mediated through a marked decrease in the number of the functional biotin transport carriers with no change in their affinity, as indicated by the severe inhibition in the Vmax but not the apparent Km of the biotin transport process, respectively. Pretreatment of BBMV with p-CMBS and NBD-Cl also caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with p-CMBS (or NBD-Cl) failed to protect biotin transport from inhibition. On the other hand, treatment of vesicles pretreated with p-CMBS (or NBD-Cl) with the reducing agents dithiothreitol and mercaptoethanol caused significant reversal in the inhibition of biotin transport. The inhibitory effects of p-CMBS (and NBD-Cl) on biotin transport was also found to be mediated through inhibition in the Vmax, but not the apparent Km, of biotin transport process. These results indicate the involvement of histidine residues and sulfhydryl groups in the normal function of the biotin transport system of rabbit intestinal BBM. Furthermore, the results also suggest that the histidine residues are probably located at (or near) the substrate-binding site while the sulfhydryl groups are located at a site other than the substrate binding region.  相似文献   

9.
Transport characteristics of procainamide in the brush-border membrane isolated from rabbit small intestine were studied by a rapid-filtration technique. Procainamide uptake by brush-border membrane vesicles was stimulated by an outward H(+) gradient (pH(in) = 6.0, pH(out) = 7.5) against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H(+) gradient was subjected to rapid dissipation by the presence of a protonophore, FCCP. An outward H(+) gradient-dependent procainamide uptake was not caused by H(+) diffusion potential. The initial uptake of procainamide was inhibited by other tertiary amines with N-dimethyl or N-diethyl moieties in their structures, such as triethylamine, dimethylaminoethyl chloride, and diphenhydramine, but not by tetraethylammonium and thiamine. Furthermore, procainamide uptake was stimulated by preloading the vesicles with these tertiary amines (trans-stimulation effect), indicating the existence of a specific transport system for tertiary amines. These findings indicate that procainamide transport in the intestinal brush-border membrane is mediated by the H(+)/tertiary amine antiport system that recognizes N-dimethyl or N-diethyl moieties in the structures of tertiary amines.  相似文献   

10.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

11.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [(3)H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3'-sulfonate (Woodward's Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H(+) exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H(+) antiport mechanism.  相似文献   

12.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from the plant pathogenic fungus, Phytophthora megasperma f. sp. glycinea. Calcium uptake was ATP-dependent and by the addition of various ionophores in the presence of ATP, it was shown that Ca2+ transport was mediated by a nH+/Ca2+ antiport. Further evidence for this antiport mechanism included Ca2+ uptake driven by an imposed pH gradient and the observation that calcium could dissipate a steady-state pH gradient across the vesicle membrane. Transport mediated by the nH+/Ca2+ antiport was optimal at pH 7.0, and demonstrated saturation kinetics for Ca2+ with a Km of about 7 microM. Glyceollin, a soybean phytoalexin, was found to inhibit Ca2+ transport consistent with its ability to increase H+ conductance. In the presence of glyceollin, calcium leakage from Phytophthora membrane vesicles also increased. This study provides basic information about calcium transport in a plant pathogenic fungus as well as demonstrating a possible mode of action of a phytoalexin.  相似文献   

13.
System A and N amino acid transporters are key effectors of movement of amino acids across the plasma membrane of mammalian cells. These Na+-dependent transporters of the SLC38 gene family are highly sensitive to changes in pH within the physiological range, with transport markedly depressed at pH 7.0. We have investigated the possible role of histidine residues in the transporter proteins in determining this pH-sensitivity. The histidine-modifying agent DEPC (diethyl pyrocarbonate) markedly reduces the pH-sensitivity of SNAT2 and SNAT5 transporters (representative isoforms of System A and N respectively, overexpressed in Xenopus oocytes) in a concentration-dependent manner but does not completely inactivate transport activity. These effects of DEPC were reversed by hydroxylamine and partially blocked in the presence of excess amino acid substrate. DEPC treatment also blocked a reduction in apparent affinity for Na+ (K0.5Na+) of the SNAT2 transporter at low external pH. Mutation of the highly conserved C-terminal histidine residue to alanine in either SNAT2 (H504A) or SNAT5 (H471A) produced a transport phenotype exhibiting reduced, DEPC-resistant pH-sensitivity with no change in K0.5Na+ at low external pH. We suggest that the pH-sensitivity of these structurally related transporters results at least partly from a common allosteric mechanism influencing Na+ binding, which involves an H+-modifier site associated with C-terminal histidine residues.  相似文献   

14.
The properties of TetA(L)-dependent tetracycline/proton and Na+/proton antiport were studied in energized everted vesicles of Escherichia coli transformed with a cloned tetA(L) gene (pJTA1) from Bacillus subtilis. Inhibition patterns by valinomycin and nigericin indicated that both antiports were electrogenic, in contrast to the tetracycline/proton antiport encoded by gram-negative plasmid tet genes. Tetracycline uptake in the everted system was dependent upon a divalent cation, with cobalt being the preferred one. The apparent Km for tetracycline was markedly increased at pH 8.5 versus pH 7.5, whereas the Vmax was unchanged. The much higher apparent Km for Na+ decreased at pH 8.5 relative to that at pH 7.5, as did the Vmax. Na+ did not affect tetracycline uptake, nor did Co2+ and/or tetracycline affect Na+ uptake; complex patterns of inhibition by amiloride and analogs thereof were observed.  相似文献   

15.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using (45)Ca(2+). Uptake of (45)Ca(2+) by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of (45)Ca(2+) uptake to ATP utilization via deltamuH(+), no evidence for a secondary H(+)/Ca(2+) antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca(2+) and an imposed pH gradient could not drive (45)Ca(2+) uptake. Optimal uptake of (45)Ca(2+) occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of (45)Ca(2+) uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K(m) values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving (45)Ca(2+) uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell.  相似文献   

16.
Nitrate uptake in right-side out plasma membrane vesicles isolated from cucumber roots was characterized. Nitrate uptake into vesicles was driven by an artificially imposed pH gradient. The uptake was strongly inhibited by phenylglyoxal, an arginyl residue modificator. Only a slight repression of NO 3 transport in vesicles was observed in the presence of NEM, a thiol group reagent. pCMBS, an other thiol reagent and DEPC, an effector of histidine residue, had no effect on the nitrate transport in plasma membranes. ATP-driven proton transport in vesicles was not significantly affected in the presence of both, phenylglyoxal and DEPC, whereas pCMBS and NEM abolished it almost completely. The possible role of the particular amino acids residues in the active nitrate transport is discussed. NO 3 uptake into vesicles isolated from both, nitrate-induced and nitrate-depleted plant material was higher than that observed in the vesicles obtained from uninduced plants. Thus, isolated vesicles reflect the well-known in vivo response of intact plants on the exogenous nitrogen regime.  相似文献   

17.
The rat organic cation transporter rOCT1 with six histidine residues added to the C-terminus was expressed in Sf9 insect cells, and expression of organic cation transport was demonstrated. To purify rOCT1 protein, Sf9 cells were lysed with 1% (w/v) CHAPS [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate], centrifuged, and subjected to sequential affinity chromatography using lentil-lectin Sepharose and nickel(II)-charged nitrilotriacetic acid-agarose. This procedure yielded approximately 70 microg of purified rOCT1 protein from 10 standard culture plates. Using a freeze-thaw procedure, purified rOCT1 was reconstituted into proteoliposomes formed from phosphatidylcholine, phosphatidylserine, and cholesterol. Proteoliposomes exhibited uptake of [3H]-1-Methyl-4-phenylpyridinium ([3H]MPP) that was inhibited by quinine and stimulated by an inside-negative membrane potential. MPP uptake was saturable with an apparent K(m) of 30 +/- 17 microM. MPP uptake (0.1 microM) was inhibited by tetraethylammonium, tetrabutylammonium, and tetrapentylammonium with IC50 values of 197 +/- 11, 19 +/- 1, and 1.8 +/- 0.03 microM, respectively. With membrane potential clamped to 0 mV using valinomycin in the presence of 100 mM potassium on both sides of the membrane, uptake of 0.1 microM MPP was trans stimulated 3-fold by 2.5 mM intracellular choline, and efflux of 0.1 microM MPP was trans stimulated 4-fold by 9.5 mM extracellular choline. The data show that rOCT1 is capable and sufficient to mediate transport of organic cations. The observed trans stimulation under voltage-clamp conditions shows that rOCT1 operates as a transporter rather than a channel. Purification and reconstitution of functional active rOCT1 protein is an important step toward the biophysical characterization and crystallization.  相似文献   

18.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   

19.
It is well accepted that the mitochondrial K+/H+ antiporter is regulated by matrix Mg2+; however, this is not the only factor controlling its activity. The precise conditions used to deplete divalent cations have profound effects on the subsequent activity of the antiporter in a KOAc assay medium. Examination of the proton fluxes during both pretreatment and subsequent assay of K+/H+ antiport reveals that differences in K+/H+ antiport activity correlate very well with differences in matrix pH. Thus, inhibition of the K+/H+ antiporter following depletion of Mg2+ appears to result from inhibition by matrix protons. To test this hypothesis, we have examined the effect of modulating matrix pH in three different ways on the activity of the K+/H+ antiporter: 1) lowering the pH of the K+ pretreatment medium to 6.7 leads to inactivation of the K+/H+ antiporter; 2) adding NH4+ to the assay medium eliminates the lag in activity induced by depleting Mg2+ in a pretreatment medium containing NH4+; 3) permitting mitochondria to respire in a tetraethylammonium(+)-containing pretreatment medium activates the K+/H+ antiporter. Each one of these procedures leads to a change in matrix pH and an effect on K+/H+ antiport which appears to require regulation of the K+/H+ antiporter by matrix protons. This finding is not only physiologically significant but also provides a useful definition of conditions required for unmasking the K+/H+ antiporter in a reproducible manner.  相似文献   

20.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [3H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3′-sulfonate (Woodward’s Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H+ exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H+ antiport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号