首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Z family, a group of transposed human immunoglobulin V kappa genes   总被引:3,自引:0,他引:3  
B Straubinger  R Thiebe  M Pech  H G Zachau 《Gene》1988,69(2):209-214
A group of highly homologous transposed human V kappa I genes, which we call the Z family, was characterized. To date four members, ZI-ZIV, comprising about 230 kb, have been analyzed on cosmid clones. The largest region (ZI) has a length of 85 kb. The Z regions show extensive homology to each other according to restriction maps and hybridization data. In each Z region a solitary V kappa I gene was found. No V kappa genes of other subgroups were detected by hybridization. The nucleotide sequence of the ZI gene revealed a non-processed V kappa I pseudogene. Hybridization experiments with DNAs from rodent/human cell hybrids and other experimental data indicate that some and possibly all members of the Z family lie outside of the kappa locus which is located on chromosome 2; they have been transposed to other chromosomes. Because of their separation from the J kappa C kappa gene segment, the Z genes can be classified as pseudogenes independent of their sequences. We postulate that the Z family arose by amplification event(s). The Z regions can also be regarded as a small family of very long repetitive sequences.  相似文献   

2.
3.
We have studied the organization of variable region (V) genes of the human immunoglobulin heavy chain (H) by cosmid cloning. We isolated two independent immunoglobulin D5 clusters (D5-a and D5-b) from cosmid libraries of the human genome. Restriction maps of these two regions showed that downstream 15 kb portions of the 55 kb overlap were different although upstream 40 kb portions were almost identical. Four more D segments, (DM, DXP, DA and DK) were found around the D5 segment in the conserved region of each cluster. Nucleotide sequences of the corresponding D segments from each cluster were almost identical and they encoded potentially functional D regions. Analysis using human-rodent somatic cell hybrids demonstrated that both clusters were located in the immunoglobulin heavy chain (H) locus on chromosome 14, suggesting that the D5-a and D5-b regions evolved by internal duplication within this locus. We also isolated a 60 kb DNA region carrying four VH segments, designated as VH-F region, which was located on chromosome 16. Nucleotide sequences of the four VH segments were determined. Two of them encoded potentially functional VH segments, and the other two were pseudogenes. Some more VH segments were found to be located outside chromosome 14, by Southern blot hybridization of human-rodent hybrid cell DNAs. These results provide further evidence that the human VH locus has undergone recent reorganization.  相似文献   

4.
Guo Y  Bao Y  Meng Q  Hu X  Meng Q  Ren L  Li N  Zhao Y 《PloS one》2012,7(6):e39298
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.  相似文献   

5.
We have studied the organization of the human immunoglobulin heavy-chain genes by pulse field gel electrophoresis as well as by isolation of cosmid clones. The total length of the heavy-chain variable region locus was estimated to be approximately 3000 kb. We found that D segments including a recently isolated D5 segment were dispersed among VH segments. We identified a pseudo V segment 18 kb 3' to the D5 segment in isolated cosmid clones. A 300 kb fragment produced by MluI digestion contained VH, D, JH segments and the distance between VH and D was estimated to be approximately 240 kb. Overlapping cosmid clones containing the human D1, D2, D3, D4, JH, Cmu and C delta genes were isolated. Restriction maps of these regions indicated that the distance between D and JH is about 22 kb. A partial restriction map of the VH locus was constructed using the pulse field gel electrophoresis technique and deletion of VH segments in B cells.  相似文献   

6.
An 80,000 base-pair region from the gene locus encoding the variable regions of the human immunoglobulins of the kappa type (V kappa genes) was cloned and analysed. The region comprises five V kappa sequences of subgroup I and one interspersed V kappa pseudogene of subgroup II. The six genes and pseudogenes are arranged at different distances but in the same orientation. The organization of the cluster can be explained by a series of amplification steps; the existence of a V kappa II pseudogene in a V kappa I gene cluster may have been the result of a transposition event; a final duplication step led to a second closely related copy of the cluster. From sequence data for altogether 16,000 base-pairs it appears that gene conversion-like events and subsequent selection contribute to both homogeneity and diversity of the V kappa repertoire.  相似文献   

7.
Immunoglobulin (IG) gene rearrangement and expression are central to disease resistance and health maintenance in animals. The IG kappa (IGK) locus in swine (Sus scrofa domestica) contributes to approximately half of all antibody molecules, in contrast to many other Cetartiodactyla, whose members provide the majority of human dietary protein and in which kappa locus utilization is limited. The porcine IGK variable locus is 27.9 kb upstream of five IG kappa J genes (IGKJ) which are separated from a single constant gene (IGKC) by 2.8 kb. Fourteen variable genes (IGKV) were identified, of which nine are functional and two are open reading frame (ORF). Of the three pseudogenes, IGKV3-1 contains a frameshift and multiple stop codons, IGKV7-2 contains multiple stop codons, and IGKV2-5 is missing exon 2. The nine functional IGKV genes are phylogenetically related to either the human IGKV1 or IGKV2 subgroups. IGKV2 subgroup genes were found to be dominantly expressed. Polymorphisms were identified on overlapping BACs derived from the same individual such that 11 genes contain amino acid differences. The most striking allelic differences are present in IGKV2 genes, which contain as many as 16 amino acid changes between alleles, the majority of which are in complementarity determining region (CDR) 1. In addition, many IGKV2 CDR1 are shared between genes but not between alleles, suggesting extensive diversification of this locus through gene conversion.  相似文献   

8.
Numerous NF1 pseudogenes have been identified in the human genome. Those in 2q21, 14q11, and 22q11 form a subset with a similar genomic organization and a high sequence homology. We have studied, by polymerase chain reaction and fluorescence in situ hybridization, the extent of homology of the regions surrounding these NF1 pseudogenes. Our analyses have demonstrated that a fragment of at least 640 kb is homologous between the three regions. Based on previous studies and these new findings, we propose a model for the spreading of the NF1 pseudogene-containing regions. A fragment of approximately 640 kb was first duplicated in chromosome region 2q21 and transposed to 14q11. Subsequently, this fragment was duplicated in 14q11 and transposed to 22q11. A part of the 640-kb fragment in 14q11, with a length of about 430 kb, was further duplicated to a variable extent in 14q11. In addition, we have identified sequences that may facilitate the duplication and transposition of the 640-kb and 430-kb fragments.  相似文献   

9.
The DNA immediately flanking the 164-base-pair U1 RNA coding region is highly conserved among the approximately 30 human U1 genes. The U1 multigene family also contains many U1 pseudogenes (designated class I) with striking although imperfect flanking homology to the true U1 genes. Using cosmid vectors, we now have cloned, characterized, and partially sequenced three 35-kilobase (kb) regions of the human genome spanning U1 homologies. Two clones contain one true U1 gene each, and the third bears two class I pseudogenes 9 kb apart in the opposite orientation. We show by genomic blotting and by direct DNA sequence determination that the conserved sequences surrounding U1 genes are much more extensive than previously estimated: nearly perfect sequence homology between many true U1 genes extends for at least 24 kb upstream and at least 20 kb downstream from the U1 coding region. In addition, the sequences of the two new pseudogenes provide evidence that class I U1 pseudogenes are more closely related to each other than to true genes. Finally, it is demonstrated elsewhere (Lindgren et al., Mol. Cell. Biol. 5:2190-2196, 1985) that both true U1 genes and class I U1 pseudogenes map to chromosome 1, but in separate clusters located far apart on opposite sides of the centromere. Taken together, these results suggest a model for the evolution of the U1 multigene family. We speculate that the contemporary family of true U1 genes was derived from a more ancient family of U1 genes (now class I U1 pseudogenes) by gene amplification and transposition. Gene amplification provides the simplest explanation for the clustering of both U1 genes and class I pseudogenes and for the conservation of at least 44 kb of DNA flanking the U1 coding region in a large fraction of the 30 true U1 genes.  相似文献   

10.
Characterization of a group of transposed human V kappa genes   总被引:1,自引:0,他引:1  
A genomic region with three V kappa pseudogenes which has been transposed to chromosome 22 is characterized by detailed restriction mapping. A number of subclones are described one of which proved useful to establish an allelic restriction fragment length polymorphism (RFLP) in the region. Allelic and duplication-derived restriction site differences in cosmid clones are discussed with respect to possible problems in genomic walking experiments.  相似文献   

11.
The variable, joining and constant gene segments of the human immunoglobulin kappa locus (V kappa, J kappa and C kappa) are located on the short arm of chromosome 2 at 2p11-2p12. Here we describe a cluster of 11 V kappa genes on the long arm of chromosome 2 at 2cen-q11. By pulsed-field gel electrophoresis, cosmid cloning and DNA sequencing the cluster was shown to consist of four amplified units (amplicons). The amplicons, each 110-160 kb in size, are organized within 650 kb as an array of inverted repeats with short stretches of non-amplified DNA in between. Cloning and sequencing of three different joints between amplified and non-amplified DNA revealed the existence of parts of Alu repeats at each of the analysed joints. It is suggested that during evolution a group of five V kappa genes was transposed from the short to the long arm of chromosome 2 by a pericentric inversion. Three of the five V kappa genes were then amplified in two subsequent steps to yield the structure found in the majority of the present day population. The possible relation of this structure to a pericentric inversion of chromosome 2 that is seen cytogenetically in a small fraction of today's population is discussed.  相似文献   

12.
The recent availability of genomic sequence information for the class I region of the MHC has provided an opportunity to examine the genomic organization of HLA class I (HLAcI) and PERB11/MIC genes with a view to explaining their evolution from the perspective of extended genomic duplications rather than by simple gene duplications and/or gene conversion events. Analysis of genomic sequence from two regions of the MHC (the alpha- and beta-blocks) revealed that at least 6 PERB11 and 14 HLAcI genes, pseudogenes, and gene fragments are contained within extended duplicated segments. Each segment was searched for the presence of shared (paralogous) retroelements by RepeatMasker in order to use them as markers of evolution, genetic rearrangements, and evidence of segmental duplications. Shared Alu elements and other retroelements allowed the duplicated segments to be classified into five distinct groups (A to E) that could be further distilled down to an ancient preduplication segment containing a HLA and PERB11 gene, an endogenous retrovirus (HERV-16), and distinctive retroelements. The breakpoints within and between the different HLAcI segments were found mainly within the PERB11 and HLA genes, HERV-16, and other retroelements, suggesting that the latter have played a major role in duplication and indel events leading to the present organization of PERB11 and HLAcI genes. On the basis of the features contained within the segments, a coevolutionary model premised on tandem duplication of single and multipartite genomic segments is proposed. The model is used to explain the origins and genomic organization of retroelements, HERV-16, DNA transposons, PERB11, and HLAcI genes as distinct segmental combinations within the alpha- and beta-blocks of the human MHC. Received: 5 December 1998 / Accepted: 27 January 1999  相似文献   

13.
14.
The major source of immunoglobulin diversity is variation in DNA sequence among multiple copies of variable region (V) genes of the heavy- and light-chain multigene families. In order to clarify the evolutionary pattern of the multigene family of immunoglobulin light kappa chain V region (V kappa) genes, phylogenetic analyses of V kappa genes from humans and other vertebrate species were conducted. The results obtained indicate that the V kappa genes so far sequenced can be grouped into three major monophyletic clusters, the cartilaginous fish, bony fish and amphibian, and mammalian clusters, and that the cartilaginous fish cluster first separated from the rest of the V kappa genes and then the remaining two clusters diverged. The mammalian V kappa genes can further be divided into 10 V kappa groups, 7 of which are present in the human genome. Human and mouse V kappa genes from different V kappa groups are intermingled rather than clustered on the chromosome, and there are a large number of pseudogenes scattered on the chromosome. This indicates that the chromosomal locations of V kappa genes have been shuffled many times by gene duplication, deletion, and transposition in the evolutionary process and that many genes have become nonfunctional during this process. This mode of evolution is consistent with the model of birth-and-death evolution rather than with the model of concerted evolution. An analysis of duplicate V kappa functional genes and pseudogenes in the human genome has indicated that pseudogenes evolve faster than functional genes but that the rate of nonsynonymous nucleotide substitution in the complementarity-determining regions of V kappa genes has been enhanced by positive Darwinian selection.   相似文献   

15.
《Gene》1997,191(2):173-181
The human immunoglobulin κ locus is a duplicated structure. Contigs of 600 kb with 40 Vκ genes and 440 kb with 36 Vκ genes had been established for the Cκ proximal (p) and distal (d) copies, respectively. In addition the human genome contains more than 24 dispersed Vκ genes, called orphons. In the present study, 22 κ-locus derived YACs were analyzed in detail, while 30 orphon-derived YACs were characterized only with respect to some parameters. The κ-locus derived YACs allowed three gaps to be closed which previously could not be bridged by cosmid and phage λ cloning. At the 5′ side, the p contig was extended in the YACs by 50 kb and the d contig by 16 kb. At the 3′side, the d contig was extended by 11.5 kb. Beyond the 3′ end of the d contig a new Vκ gene was found, which is located, according to pulsed field gel electrophoresis (PFGE) experiments, at a distance of at least 140 kb from the last Vκ gene of the contig. This Vκ gene, which was termed Z0, occurred on three YACs, albeit at distances smaller than 140 kb; this was probably due to deletions in the YACs caused by abundant repetitive sequences at the borders of the locus. According to its sequence and to the restriction map of its surroundings, Z0 is an orphon gene of the so-called Z family, of which several members are known to be dispersed throughout the genome. The possibility that Z0 has been the parent of the other Z orphons is discussed.  相似文献   

16.
17.
Zachau HG 《Biological chemistry》2000,381(9-10):951-954
Some aspects of the work of our group on the human and mouse immunoglobulin kappa genes are reviewed. The human kappa locus contains a large duplication: a 600 kb Ckappa-proximal copy with 40 Vkappa genes is found in the close vicinity of a 440 kb Ckappa-distal copy with 36 very similar, but not identical, Vkappa genes. The chimpanzee has only the Ckappa-proximal copy of the locus. The kappa locus of the mouse is close to 3.2 Mb in size, of which 3.1 Mb have been cloned in four contigs, leaving three small gaps of together about 90 kb; 140 Vkappa genes and pseudogenes were localized and sequenced. In parallel to the elucidation of the structure of the kappa loci, the mechanisms of the V-J rearrangement, somatic hypermutation and kappa gene expression were studied. Various polymorphisms were detected in the human population and a number of haplotypes defined. In addition to the Vkappa genes within the loci numerous Vkappa orphons were localized on different chromosomes. Comparing the kappa loci of different species allows some interesting conclusions as to the evolution of this multigene family. Finally our strategy of elucidating the structure and function of the kappa loci, which has been termed a 'cottage industry approach', is discussed in relation to the large-scale genome analysis as pursued today using automated methods.  相似文献   

18.
We describe nine T cell gamma variable (V) gene segments isolated from human DNA. These genes, which fall into two subgroups, are mapped in two DNA regions covering 54 kb and probably represent the majority of human V gamma genes. One subgroup (V gamma I) contains eight genes, consisting of four active genes and four pseudogenes. The single V gamma II gene is potentially active. Sequence analysis of the V gamma I genes shows variation clustered in hypervariable regions, but somatic variability is restricted to N-region diversity. Studies on rearrangement in T cell lines and in thymic DNA show that major rearrangements can be observed that are attributable to the five active V gamma genes. In addition, human cells with the phenotype of helper T cells can undergo productive V gamma-J gamma joining.  相似文献   

19.
Using genomic cosmid and BAC clones and genome shotgun supercontigs available in GenBank, we determined the complete gene structure of the four mouse secreted gel-forming mucin genes Muc2, Muc5ac, Muc5b and Muc6 and the organization of the genomic locus harboring these genes. The mouse secreted gel-forming mucin gene is 215 kb on distal chromosome 7 to 69.0 cM from the centromere and organized as: Muc6-Muc2-Muc5ac-Muc5b with Muc2, Muc5ac and Muc5b arranged in the same orientation and Muc6 in opposite. Mouse mucin genes have highly similar genomic organization to each other and to their respective human homologues indicating that they have been well conserved through evolution. Deduced peptides showed striking sequence similarities in their N- and C-terminal regions whereas the threonine/serine/proline-rich central region is specific for each other and for species. Expression studies also showed that they have expression patterns similar to human mucin genes with Muc2 expressed in small and large intestines, Muc5ac and Muc6 in stomach, and Muc5b in laryngo-tracheal tract. These data constitute an important initial step for investigation of mucin gene regulation and mucin function through the use of animal models.  相似文献   

20.
A cosmid clone containing the entire hCG beta gene cluster has been isolated. The restriction map of this clone has been determined by an indirect-end-label FIGE (field inversion gel electrophoresis) method. Analysis of this cosmid clone shows that there are 6 hCG beta genes in human genomic DNA. A previously uncloned portion of the hCG beta cluster, termed the "gap" region, has been shown not to contain any sequences homologous to the hCG beta cDNA. The restriction mapping method employed in this study takes advantage of the superior resolution of FIGE for high molecular weight DNA fragments in the size range 15-50 kb. This method is broadly applicable and permits rapid and accurate restriction mapping for extended regions of genomic DNA that have been cloned into cosmid or lambda vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号