首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of aspartate-beta-semialdehyde dehydrogenase (ASADH) from Methanococcus jannaschii has been determined to 2.3 angstroms resolution using multiwavelength anomalous diffraction (MAD) phasing of a selenomethionine-substituted derivative to define a new branch in the family of ASADHs. This new structure has a similar overall fold and domain organization despite less than 10% conserved sequence identity with the bacterial enzymes. However, the entire repertoire of functionally important active site amino acid residues is conserved, suggesting an identical catalytic mechanism but with lower catalytic efficiency. A new coenzyme-binding conformation and dual NAD/NADP coenzyme specificity further distinguish this archaeal branch from the bacterial ASADHs. Several structural differences are proposed to account for the dramatically enhanced thermostability of this archaeal enzyme. Finally, the intersubunit communication channel connecting the active sites in the bacterial enzyme dimer has been disrupted in the archaeal ASADHs by amino acid changes that likely prevent the alternating sites reactivity previously proposed for the bacterial ASADHs.  相似文献   

2.
Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.  相似文献   

3.
Aspartate-beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the biosynthetic pathway through which bacteria, fungi, and the higher plants synthesize amino acids, including lysine and methionine and the cell wall component diaminopimelate from aspartate. Blocks in this biosynthetic pathway, which is absent in mammals, are lethal, and inhibitors of ASADH may therefore serve as useful antibacterial, fungicidal, or herbicidal agents. We have determined the structure of ASADH from Escherichia coli by crystallography in the presence of its coenzyme and a substrate analogue that acts as a covalent inhibitor. This structure is comparable to that of the covalent intermediate that forms during the reaction catalyzed by ASADH. The key catalytic residues are confirmed as cysteine 135, which is covalently linked to the intermediate during the reaction, and histidine 274, which acts as an acid/base catalyst. The substrate and coenzyme binding residues are also identified, and these active site residues are conserved throughout all of the ASADH sequences. Comparison of the previously determined apo-enzyme structure [Hadfield et al. J. Mol. Biol. (1999) 289, 991-1002] and the complex presented here reveals a conformational change that occurs on binding of NADP that creates a binding site for the amino acid substrate. These results provide a structural explanation for the preferred order of substrate binding that is observed kinetically.  相似文献   

4.
Aspartyl β-semialdehyde dehydrogenase (ASADH) is an important enzyme, occupying the first branch position of the biosynthetic pathway of the aspartate family of amino acids in bacteria, fungi and higher plants. It catalyses reversible dephosphorylation of l-β-aspartyl phosphate (βAP) to l-aspartate-β-semialdehyde (ASA), a key intermediate in the biosynthesis of diaminopimelic acid (DAP)—an essential component of cross linkages in bacterial cell walls. Since the aspartate pathway is unique to plants and bacteria, and ASADH is the key enzyme in this pathway, it becomes an attractive target for antimicrobial agent development. Therefore, with the objective of deducing comparative structural models, we have described a molecular model emphasizing the uniqueness of ASADH from Mycobacterium tuberculosis (H37Rv) that should generate insights into the structural distinctiveness of this protein as compared to structurally resolved ASADH from other bacterial species. We find that mtASADH exhibits structural features common to bacterial ASADH, while other structural motifs are not present. Structural analysis of various domains in mtASADH reveals structural conservation among all bacterial ASADH proteins. The results suggest that the probable mechanism of action of the mtASADH enzyme might be same as that of other bacterial ASADH. Analysis of the structure of mtASADH will shed light on its mechanism of action and may help in designing suitable antagonists against this enzyme that could control the growth of Mycobacterium tuberculosis. Anupama Singh and Hemant R. Kushwaha contributed equally to this work.  相似文献   

5.
James CL  Viola RE 《Biochemistry》2002,41(11):3726-3731
The direct channeling of an intermediate between enzymes that catalyze consecutive reactions in a pathway offers the possibility of an efficient, exclusive, and protected means of metabolite delivery. Aspartokinase-homoserine dehydrogenase I (AK-HDH I) from Escherichia coli is an unusual bifunctional enzyme in that it does not catalyze consecutive reactions. The potential channeling of the intermediate beta-aspartyl phosphate between the aspartokinase of this bifunctional enzyme and aspartate semialdehyde dehydrogenase (ASADH), the enzyme that catalyzes the intervening reaction, has been examined. The introduction of increasing levels of inactivated ASADH has been shown to compete against enzyme-enzyme interactions and direct intermediate channeling, leading to a decrease in the overall reaction flux through these consecutive enzymes. These same results are obtained whether these experiments are conducted with aspartokinase III, a naturally occurring monofunctional isozyme, with an artificially produced monofunctional aspartokinase I, or with a fusion construct of AK I-ASADH. These results provide definitive evidence for the channeling of beta-aspartyl phosphate between aspartokinase and aspartate semialdehyde dehydrogenase in E. coli and suggest that ASADH may provide a bridge to channel the intermediates between the non-consecutive reactions of AK-HDH I.  相似文献   

6.
L-Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes the reductive dephosphorylation of beta-aspartyl phosphate to L-aspartate-beta-semialdehyde in the aspartate biosynthetic pathway of plants and micro-organisms. The aspartate pathway produces fully one-quarter of the naturally occurring amino acids, but is not found in humans or other eukaryotic organisms, making ASADH an attractive target for the development of new antibacterial, fungicidal, or herbicidal compounds. We have determined the structure of ASADH from Vibrio cholerae in two states; the apoenzyme and a complex with NADP, and a covalently bound active site inhibitor, S-methyl-L-cysteine sulfoxide. Upon binding the inhibitor undergoes an enzyme-catalyzed reductive demethylation leading to a covalently bound cysteine that is observed in the complex structure. The enzyme is a functional homodimer, with extensive intersubunit contacts and a symmetrical 4-amino acid bridge linking the active site residues in adjacent subunits that could serve as a communication channel. The active site is essentially preformed, with minimal differences in active site conformation in the apoenzyme relative to the ternary inhibitor complex. The conformational changes that do occur result primarily from NADP binding, and are localized to the repositioning of two surface loops located on the rim at opposite sides of the NADP cleft.  相似文献   

7.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.  相似文献   

8.
Acetohydroxamic acid reacts with the enzyme-CoA form of succinyl-CoA:3-ketoacid coenzyme A transferase to give an inactive product with a rate constant of 860 M-1 min-1 at pH 8.1, 25 degrees C. The reaction is reversible in the presence of coenzyme A and has an equilibrium constant of 0.040. The product is an anhydride that is an analog of the intermediate that has been postulated in the normal catalytic pathway; it is inactive because coenzyme A does not react with the acyl group of the hydroxamic acid. The equilibrium constant for formation of the anhydride from the thil ester of enzyme and methyl 3-mercaptopropionate is 75 times larger than the equilibrium constant of 2.2 for the formation of N,O-diacetylhydroxylamine from acetohydroxamic acid and acetyl-CoA. This shows that the enzyme stabilizes the anhydride at the active site by at least -2.6 kcal mol-1. Succinomonohydroxamic acid reacts with enzyme-CoA as both a substrate and an inactivator, with relative rate constants of 25:1. The inactivation is irreversible, indicating that the enzyme provides a larger stabilization of at least -5.9 kcal mol-1 for the anhydride of an analog of the specific substrate, succinate. The results are consistent with the hypothesis that the enzyme stabilizes an anhydride that is formed at the active site during turnover of normal substrates through a stepwise reaction mechanism.  相似文献   

9.
The rise in organisms resistant to existing drugs has added urgency to the search for new antimicrobial agents. Aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes a critical step in an essential microbial pathway that is absent in mammals. Our laboratory is using fragment library screening to identify efficient and selective ASADH inhibitors. These preliminary agents are then tested to identify compounds with desired antimicrobial properties for further refinement. Toward this end, we have established a microplate-based, dual-assay approach using a single reagent to evaluate antibiotic activity and mammalian cell toxicity during early stage development. The bacterial assay uses nonpathogenic bacteria to allow efficacy testing without a dedicated microbial laboratory. Toxicity assays are performed with a panel of mammalian cells derived from representative susceptible tissues. These assays can be adapted to target other microbial systems, such as fungi and biofilms, and additional mammalian cell lines can be added as needed. Application of this screening approach to antibiotic standards demonstrates the ability of these assays to identify bacterial selectivity and potential toxicity issues. Tests with selected agents from the ASADH inhibitor fragment library show some compounds with antibiotic activity, but as expected, most of these early agents display higher than desired mammalian cell toxicity.  相似文献   

10.
The bacterial enzymes acetate kinase (AK) and phosphotransacetylase (PTA) form a key pathway for synthesis of the central metabolic intermediate acetyl coenzyme A (acetyl-CoA) from acetate or for generation of ATP from excess acetyl-CoA. Putative AK genes have now been identified in some eukaryotic microbes. In Chlamydomonas reinhardtii and Phytophthora species, AK forms a pathway with PTA. AK has also been identified in non-yeast fungi but these fungi do not have PTA. Instead, AK forms a pathway with D-xylulose 5-phosphate phosphoketolase (XFP), a pathway that was also previously found only in bacteria. In Entamoeba histolytica, neither PTA nor XFP was found as a partner for AK. Thus, eukaryotic microbes seem to have incorporated the 'bacterial' enzyme AK into at least three different metabolic pathways.  相似文献   

11.
Homoisocitrate dehydrogenase is involved in the alpha-aminoadipate pathway of L-lysine biosynthesis in higher fungi such as yeast and human pathogenic fungi. This enzyme catalyzes the oxidative decarboxylation of (2R,3S)-homoisocitrate into 2-ketoadipate using NAD(+) as a coenzyme. A series of aza-, oxa-, and thia-analogues of homoisocitrate was designed and synthesized as an inhibitor for homoisocitrate dehydrogenase. Among them, thia-analogue showed strong competitive inhibitory activity as K(i)=97 nM toward homoisocitrate dehydrogenase derived from Saccharomyces cerevisiae. Kinetic studies suggested that the formation of the enolate intermediate played an important role in inhibition.  相似文献   

12.
The structure of the mixed, enzyme-cofactor disulfide intermediate of ketopropyl-coenzyme M oxidoreductase/carboxylase has been determined by X-ray diffraction methods. Ketopropyl-coenzyme M oxidoreductase/carboxylase belongs to a family of pyridine nucleotide-containing flavin-dependent disulfide oxidoreductases, which couple the transfer of hydride derived from the NADPH to the reduction of protein cysteine disulfide. Ketopropyl-coenzyme M oxidoreductase/carboxylase, a unique member of this enzyme class, catalyzes thioether bond cleavage of the substrate, 2-ketopropyl-coenzyme M, and carboxylation of what is thought to be an enzyme-stabilized enolacetone intermediate. The mixed disulfide of 2-ketopropyl-coenzyme M oxidoreductase/carboxylase was captured through crystallization of the enzyme with the physiological products of the reaction, acetoacetate, coenzyme M, and NADP, and reduction of the crystals with dithiothreitol just prior to data collection. Density in the active-site environment consistent with acetone, the product of reductive decarboxylation of acetoacetate, was revealed in this structure in addition to a well-defined hydrophobic pocket or channel that could be involved in the access for carbon dioxide. The analysis of this structure and that of a coenzyme-M-bound form provides insights into the stabilization of intermediates, substrate carboxylation, and product release.  相似文献   

13.
NADH is transferred directly from one dehydrogenase enzyme site to another without intervention of the aqueous solvent whenever the two dehydrogenases are of opposite chiral specificity as regards the C4 H of NADH which is transferred in the catalyzed reduction reaction. When both enzymes catalyze the transfer of hydrogen from the same face of the nicotinamide ring, direct enzyme-enzyme transfer of NADH is not possible [Srivastava, D. K., & Bernhard, S. A. (1984) Biochemistry 23, 4538-4545; Srivastava, D. K., & Bernhard, S. A. (1985) Biochemistry (preceding paper in this issue)]. Utilizing an advanced computer graphics facility, and the known three-dimensional coordinates for three dehydrogenases, we have investigated the feasibility of various aspects of the direct transfer of dinucleotide from the site of one enzyme to the site of the other. The facile passage of the coenzyme through the first enzyme site requires an open protein conformation, characteristic of the apoenzyme rather than the holoenzyme structure. Since two dehydrogenases of the same chirality bind coenzyme in the same conformation, the direct transfer of coenzyme from one site to the other is impossible due to the restriction in molecular rotation of the coenzyme in the path of transfer from one binding site to the other; therefore, coenzyme can only be transferred from one dehydrogenase site to another site via the intermediate dissociation of coenzyme into the aqueous milieu. In contrast, when an A dehydrogenase and a B dehydrogenase are juxtaposed, it is stereochemically feasible to transfer the nicotinamide ring from its specific binding site in one enzyme to the site in the other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Serotonin N-acetyltransferase, a member of the GNAT acetyltransferase superfamily, is the penultimate enzyme in the conversion of serotonin to melatonin, the circadian neurohormone. Comparison of the structures of the substrate-free enzyme and the complex with a bisubstrate analog, coenzyme A-S-acetyltryptamine, demonstrates that acetyl coenzyme A (AcCoA) binding is accompanied by a large conformational change that in turn leads to the formation of the serotonin-binding site. The structure of the complex also provides insight into how the enzyme may facilitate acetyl transfer. A water-filled channel leading from the active site to the surface provides a pathway for proton removal following amine deprotonation. Furthermore, structural and mutagenesis results indicate an important role for Tyr-168 in catalysis.  相似文献   

15.
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.  相似文献   

16.
The structure of the catalytic portion of human HMG-CoA reductase   总被引:6,自引:0,他引:6  
In higher plants, fungi, and animals isoprenoids are derived from the mevalonate pathway. The carboxylic acid mevalonate is formed from acetyl-CoA and acetoacetyl-CoA via the intermediate 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). The four-electron reduction of HMG-CoA to mevalonate, which utilizes two molecules of NADPH, is the committed step in the biosynthesis of isoprenoids. This reaction is catalyzed by HMG-CoA reductase (HMGR). The activity of HMGR is controlled through synthesis, degradation and phosphorylation. The human enzyme has also been targeted successfully by drugs, known as statins, in the clinical treatment of high serum cholesterol levels. The crystal structure of the catalytic portion of HMGR has been determined recently with bound reaction substrates and products. The structure illustrates how HMG-CoA and NADPH are recognized and suggests a catalytic mechanism. Catalytic portions of human HMGR form tight tetramers, explaining the influence of the enzyme's oligomeric state on the activity and suggesting a mechanism for cholesterol sensing.  相似文献   

17.
Nazi I  Wright GD 《Biochemistry》2005,44(41):13560-13566
Homoserine transacetylase is a required catalyst in the biochemical pathway that metabolizes Asp to Met in fungi. The enzyme from the yeast Schizosaccharomyces pombe activates the hydroxyl group of L-homoserine by acetylation from acetyl coenzyme A. This enzyme is unique to fungi and some bacteria and presents an important new target for drug discovery. Steady-state kinetic parameters provide evidence that this enzyme follows a ping-pong mechanism. Proton inventory was consistent with a single-proton transfer, and pH studies suggested the participation of at least one residue with a pKa value of 6.4-6.6, possibly a His or Asp/Glu in catalysis. Protein sequence alignments indicate that this enzyme belongs to the alpha/beta-hydrolase fold superfamily of enzymes, indicating the involvement of an active-site nucleophile and possibly a canonical catalytic triad. We constructed site-specific mutants and identified Ser163, Asp403, and His432 as the likely active-site residues of a catalytic triad based on steady-state kinetics and genetic complementation of a yeast null mutant. Moreover, unlike the wild-type enzyme, inactive site mutants were not capable of producing an acetyl-enzyme intermediate. Homoserine transacetylase therefore catalyzes the acetylation of L-homoserine via a covalent acyl-enzyme intermediate through an active-site Ser. These results form the basis of future exploitation of this enzyme as an antimicrobial target.  相似文献   

18.
Aminotransferase from a deletion mutant in the histidine operon   总被引:1,自引:1,他引:0       下载免费PDF全文
The imidazolylacetolphosphate:l-glutamate aminotransferase from the deletion mutant hisHB22 has been partially characterized. Although genetic studies have not yet shown the deletion to involve the structural information for this enzyme, physical studies indicate that an abnormal enzyme is produced. Evidence is presented which, together with previous data on the characterization of the enzyme, indicates that the catalytic integrity of the enzyme is intact, and that the low specific activity seen in cell extracts is due to formation of an enzyme which has a reduced coenzyme content. It is suggested that this reduced coenzyme content is due primarily to a reduced affinity of the enzyme (nascent or apo-) for its coenzyme, and that the coenzyme must be incorporated into the enzyme at the moment of synthesis for formation of a functional protein.  相似文献   

19.
Biosynthesis of the isoprenoid precursor, isopentenyl diphosphate, is a critical function in all independently living organisms. There are two major pathways for this synthesis, the non-mevalonate pathway found in most eubacteria and the mevalonate pathway found in animal cells and a number of pathogenic bacteria. An early step in this pathway is the condensation of acetyl-CoA and acetoacetyl-CoA into HMG-CoA, catalyzed by the enzyme HMG-CoA synthase. To explore the possibility of a small molecule inhibitor of the enzyme functioning as a non-cell wall antibiotic, the structure of HMG-CoA synthase from Enterococcus faecalis (MVAS) was determined by selenomethionine MAD phasing to 2.4 A and the enzyme complexed with its second substrate, acetoacetyl-CoA, to 1.9 A. These structures show that HMG-CoA synthase from Enterococcus is a member of the family of thiolase fold enzymes and, while similar to the recently published HMG-CoA synthase structures from Staphylococcus aureus, exhibit significant differences in the structure of the C-terminal domain. The acetoacetyl-CoA binary structure demonstrates reduced coenzyme A and acetoacetate covalently bound to the active site cysteine through a thioester bond. This is consistent with the kinetics of the reaction that have shown acetoacetyl-CoA to be a potent inhibitor of the overall reaction, and provides a starting point in the search for a small molecule inhibitor.  相似文献   

20.
An affinity chromotography resin highly specific for rat liver tyrosine aminotransferase (EC 2.6.1.5) has been synthesized and used in the purification of this enzyme. The structure of the resin, N-(5′-phosphopyridoxyl)-l-tyrosyl-aminoocytl-Sepharose 4B, was designed to resemble the tyrosine-pyridoxal phosphate Schiff's base intermediate in the reaction pathway catalyzed by this enzyme. Use of this resin in combination with octyl-agarose chromatography on partially purified enzyme resulted in a tyrosine aminotransferase preparation with a specific activity of about 450 units/mg protein. When analyzed on one-dimensional polyacrylamide-sodium dodecyl sulfate slab gels, the highly purified enzyme was composed of two polypeptides with molecular weights of about 56,000 and 53,000. Radioiodinated tryptic peptides from each of these polypeptides were essentially identical following two-dimensional analysis. Although the two polypeptides could not be separated from each other in an active form, it was found that (i) both polypeptides have pyridoxal phosphate-binding sites, (ii) the coenzyme is probably bound to both polypeptides as a Schiff's base, (iii) both polypeptides have binding sites for l-tyrosine and l-glutamic acid, the two specific substrates for the enzyme, and (iv) both polypeptides can catalyze the formation of the initial amino acid-pyridoxal phosphate Schiff's base adduct in the overall reaction pathway. Since the ratios of these polypeptides differed from preparation to preparation of purified enzyme, the 53,000 Mr species probably arises by proteolysis of tyrosine aminotransferase in crude liver extracts. These results imply that if tyrosine aminotransferase isozymes exist, they are not the result of translation products produced by different structural genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号