首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver X receptor (LXR) is a nuclear receptor that plays a crucial role in orchestrating the trafficking of sterols between tissues. Treatment of mice with a potent and specific LXR agonist, T0901317, is associated with increased biliary cholesterol secretion, decreased fractional cholesterol absorption, and increased fecal neutral sterol excretion. Here we show that expression of two target genes of LXRalpha, the ATP-binding cassette (ABC) transporters Abcg5 and Abcg8, is required for both the increase in sterol excretion and the decrease in fractional cholesterol absorption associated with LXR agonist treatment. Mice expressing no ABCG5 and ABCG8 (G5G8(-/-) mice) and their littermate controls were treated for 7 days with T0901317. In wild type animals, treatment with the LXR agonist resulted in a 3-fold increase in biliary cholesterol concentrations, a 25% reduction in fractional cholesterol absorption, and a 4-fold elevation in fecal neutral sterol excretion. In contrast, the LXR agonist did not significantly affect biliary cholesterol levels, fractional cholesterol absorption, or neutral fecal sterol excretion in the G5G8(-/-) mice. Thus Abcg5 and Abcg8 are required for LXR agonist-associated changes in dietary and biliary sterol trafficking. These results establish a central role for ABCG5 and ABCG8 in promoting cholesterol excretion in vivo.  相似文献   

2.
3.
The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in hepatobiliary cholesterol excretion in mice during (maximal) stimulation of this process. Despite similar bile salt (BS) excretion rates, basal total sterol and phospholipid (PL) output rates were reduced by 82% and 35%, respectively, in chow-fed Abcg5(-/-) mice compared with wild-type mice. When mice were infused with the hydrophilic BS tauroursodeoxycholate, similar relative increases in bile flow, BS output, PL output, and total sterol output were observed in wild-type, Abcg5(+/-), and Abcg5(-/-) mice. Maximal cholesterol and PL output rates in Abcg5(-/-) mice were only 15% and 69%, respectively, of wild-type values. An infusion of increasing amounts of the hydrophobic BS taurodeoxycholate increased cholesterol excretion by 3.0- and 2.4-fold in wild-type and Abcg5(-/-) mice but rapidly induced cholestasis in Abcg5(-/-) mice. Treatment with the liver X receptor (LXR) agonist T0901317 increased the maximal sterol excretion capacity in wild-type mice (fourfold), concomitant with the induction of Abcg5/Abcg8 expression, but not in Abcg5(-/-) mice. In a separate study, mice were fed chow containing 1% (wt/wt) cholesterol. As expected, hepatic expression of Abcg5 and Abcg8 was strongly induced (fivefold and fourfold) in wild-type but not LXR-alpha-deficient (Lxra(-/-)) mice. Surprisingly, hepatobiliary cholesterol excretion was increased to the same extent, i.e., 2.2-fold in wild-type mice and 2.0-fold in Lxra(-/-) mice, upon cholesterol feeding. Our data confirm that Abcg5, as part of the Abcg5/Abcg8 heterodimer, strongly controls hepatobiliary cholesterol secretion in mice. However, our data demonstrate that Abcg5/Abcg8 heterodimer-independent, inducible routes exist that can significantly contribute to total hepatobiliary cholesterol output.  相似文献   

4.
Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-binding cassette transporters Abca1 and Abcg5/Abcg8 are presumed to be involved in cholesterol efflux from the enterocyte toward plasma HDL and back into the intestinal lumen, respectively. Abca1, Abcg5, and Abcg8 are well-established liver X receptor (LXR) target genes. We examined the effects of a high-fat diet on expression and function of cholesterol transporters in the small intestine in mice. Npc1l1, Abca1, Abcg5, and Abcg8 were all downregulated after 2, 4, and 8 wk on a cholesterol-free, high-fat diet. The high-fat diet did not affect biliary cholesterol secretion but diminished fractional cholesterol absorption from 61 to 42% (P < 0.05). In an acute experiment in which triacylglycerols of unsaturated fatty acids were given by gavage, we found that this downregulation occurs within a 6-h time frame. Studies in LXRalpha-null mice, confirmed by in vitro data, showed that fatty acid-induced downregulation of cholesterol transporters is LXRalpha independent and associated with a posttranslational increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity that reflects induction of cholesterol biosynthesis as well as with a doubling of neutral fecal sterol loss. This study highlights the induction of adaptive changes in small intestinal cholesterol metabolism during exposure to dietary fat.  相似文献   

5.
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.Reverse cholesterol transport (RCT)3 is defined as the flux of excess cholesterol from peripheral tissues toward the liver followed by biliary secretion and subsequent disposal via the feces (1). Accumulation of cholesterol in macrophages in the vessel wall is considered a primary event in the development of atherosclerosis and, therefore, removal of excess cholesterol from these cells is of crucial importance for prevention and/or treatment of atherosclerotic cardiovascular diseases. It is generally accepted that HDL is the obligate transport vehicle in RCT and that plasma HDL levels reflect the capacity to accommodate this flux. In line herewith, HDL-raising therapies are currently considered as a promising strategy for prevention and treatment of atherosclerotic cardiovascular diseases (2). In the “classical” scenario, the liver has a central role in RCT (3). Biliary secretion of free cholesterol, facilitated by the heterodimeric ABC-transporter ABCG5/ABCG8 (4), and hepatic conversion of cholesterol into bile acids followed by fecal excretion are referred to as the main routes for quantitatively important elimination of cholesterol from the body. Fecal excretion of sterols is stimulated upon whole body activation of the liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor family for which oxysterols have been identified as natural ligands (5). LXR regulates expression of several genes involved in RCT and activation of LXR by synthetic agonists leads to elevated plasma HDL-cholesterol levels, increased hepatobiliary cholesterol secretion, reduced fractional intestinal cholesterol absorption and increased fecal sterol loss (6). LXR is thus considered an attractive target for therapeutic strategies aimed at stimulation of RCT, which, however, will require approaches to circumvent potential detrimental consequences of LXR activation such as induction of lipogenesis.Recent studies indicate that the classical concept of RCT may require reconsideration. Studies in apoA-I-deficient mice revealed that the magnitude of the centripetal cholesterol flux from the periphery to the liver is not related to the concentration of HDL-cholesterol or apoA-I in plasma (7). Furthermore, Abca1−/− mice that completely lack plasma HDL show unaffected rates of hepatobiliary cholesterol secretion and fecal sterol loss (8). Additionally, mice lacking both Abcg5 and Abcg8 do not show a reduction in fecal neutral sterol excretion to the extent expected on the basis of their strongly reduced hepatobiliary cholesterol secretion (9). Recent studies by Plösch et al. (6) have revealed that increased fecal neutral sterol loss upon general LXR activation cannot be attributed to the increased hepatobiliary cholesterol secretion only, suggesting a major contribution of the intestine in excretion of cholesterol. This potential role of the intestine in cholesterol removal from the body has been corroborated by Kruit et al. (10), who showed that fecal sterol loss is not affected in Mdr2−/− (Abcb4−/−) mice that have a dramatic reduction in biliary cholesterol secretion (11). Moreover, intravenously administered [3H]cholesterol could be recovered in the neutral sterol fraction of the feces in these mice and fecal excretion of neutral sterols was stimulated upon treatment with an LXR agonist (10). However, the exact quantitative contribution of the direct intestinal pathway under physiological conditions has not directly been determined so far. Very recently, intestinal perfusion studies in mice revealed that, in the presence of mixed micelles as cholesterol acceptors in the intestinal lumen, murine enterocytes indeed have a high capacity to secrete cholesterol via a specific process that is most active in the proximal part of the small intestine (12). In addition, it was shown that direct trans-intestinal cholesterol excretion (TICE) could be stimulated by a high fat diet. The existence of a non-biliary route for fecal neutral sterol excretion is further supported by very recent studies by Brown et al. (13) in mice with targeted deletion of hepatic ACAT2.The present study provides insight into the relative and absolute contributions of several cholesterol fluxes relevant to total fecal sterol loss in mice, making use of a panel of stable isotope tracers. Our results show that TICE is a major route for removal of blood-derived free cholesterol and that pharmacological LXR activation strongly stimulates this arm of the reverse cholesterol transport pathway.  相似文献   

6.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

7.
ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.  相似文献   

8.
Liver X receptor (LXR) agonists increase both total fecal sterol excretion and macrophage-specific reverse cholesterol transport (RCT) in vivo. In this study, we assessed the effects of ABCG5/G8 deficiency as well as those of LXR agonist-induction of RCT from macrophages to feces in vivo. A [(3)H]cholesterol-labeled macrophage cell line was injected intraperitoneally into ABCG5/G8-deficient (G5/G8(-/-)), heterozygous (G5G8(+/-)), and wild-type G5/G8(+/+) mice. G5/G8(-/-)mice presented increased radiolabeled HDL-bound [(3)H]cholesterol 24 h after the label injection. However, the magnitude of macrophage-derived [(3)H]cholesterol in liver and feces did not differ between groups. A separate experiment was conducted in G5G8(+/+) and G5G8(-/-) mice treated with or without the LXR agonist T0901317. Treatment with T0901317 increased liver ABCG5/G8 expression, which was associated with a 2-fold increase in macrophage-derived [(3)H]cholesterol in feces of G5/G8(+/+) mice. However, T0901317 treatment had no effect on fecal [(3)H]cholesterol excretion in G5G8(-/-) mice. Additionally, LXR activation stimulated the fecal excretion of labeled cholesterol after an intravenous injection of HDL-[(3)H]cholesteryl oleate in G5/G8(+/+) mice, but failed to enhance fecal [(3)H]cholesterol in G5/G8(-/-) mice. Our data provide direct in vivo evidence of the crucial role of ABCG5 and ABCG8 in LXR-mediated induction of macrophage-specific RCT.  相似文献   

9.
Recent studies have demonstrated that the ATP-binding cassette transporter A1 (ABCA1) facilitates the efflux of phospholipids and cholesterol to apoprotein acceptors, leading to the synthesis of HDL. The purpose of this study was to determine the changes in the lipoprotein fractions in Abca1-deficient mice and study the mechanisms responsible for the low levels of HDL when ABCA1 is absent. Plasma phospholipid concentration was decreased by more than 75%, mostly due to a reduction of phosphatidylcholine (PC) in HDL. Abca1(-/-) HDL represents less than 2% of wild-type levels and is smaller and enriched in phospholipids (11.2-fold more than HDL from controls). Compared to wild-type littermates, Abca1(-/-) HDL had a 4-fold increase in PC, whereas lysophosphatidylcholine (LPC) (125-fold), sphingomyelin (SPH) (49-fold), and phosphatidylethanolamine (PE) (18-fold) showed even higher increases. As a consequence, the ratios of LPC/PC, SPH/PC, PE/PC, and phosphatidylinositol + phosphatidylserine (PI+PS)/PC were all much higher in HDL from Abca1(-/-), compared to wild-type HDL. Plasma phospholipid transfer protein (PLTP) and lecithin cholesterol acyltransferase (LCAT) activities were decreased by more than 80%, suggesting that the maturation of HDL is affected. To test this hypothesis, plasma from Abca1(-/-) mice was incubated with CHO cells that are known to express high levels of ABCA1 with the intent of restoring the flux of phospholipid and cholesterol onto apoAI. Compared to native plasma, no change in maturation of HDL was observed. In contrast, a 220% increase in the formation of mature HDL was observed when ABCA1 function and LCAT activities were restored. Taken together, these observations suggest that ABCA1 is necessary for the adequate lipidation of apoAI, which enables the interaction with LCAT and subsequent maturation.  相似文献   

10.
11.
Cholesterol is critical for several cellular functions and essential for normal fetal development. Therefore, its metabolism is tightly controlled during all life stages. The liver X receptors-alpha (LXRalpha; NR1H3) and -beta (LXRbeta; NR1H2) are nuclear receptors that are of key relevance in coordinating cholesterol and fatty acid metabolism. The aim of this study was to elucidate whether fetal cholesterol metabolism can be influenced in utero via pharmacological activation of LXR and whether this would have long-term effects on cholesterol homeostasis. Administration of the LXR agonist T0901317 to pregnant mice via their diet (0.015% wt/wt) led to induced fetal hepatic expression levels of the cholesterol transporter genes Abcg5/g8 and Abca1, higher plasma cholesterol levels, and lower hepatic cholesterol levels compared with controls. These profound changes during fetal development did not affect cholesterol metabolism in adulthood nor did they influence coping with a high-fat/high-cholesterol diet. This study shows that the LXR system is functional in fetal mice and susceptible to pharmacological activation. Despite massive changes in fetal cholesterol metabolism, regulatory mechanisms involved in cholesterol metabolism return to a "normal" state in offspring and allow coping with a high-fat/high-cholesterol diet.  相似文献   

12.
Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cassette protein A1 deficient (Abca1(-/-)) mice that lack HDL and wild-type (WT) mice were intravenously injected with chylomicron-like emulsion particles that contained radiolabeled cholesterol that is liberated in the liver and partly reenters the circulation. Both groups secreted radiolabeled cholesterol from plasma into intestinal lumen and TICE was unaltered between the two mouse models. To further investigate the role of HDL, we injected HDL with radiolabeled cholesterol in WT mice and Abca1(-/-)×Sr-b1(-/-) mice that lack HDL and are also unable to clear HDL via the liver. The intestines of both mice were unable to take up and secrete radiolabeled cholesterol from HDL via TICE. Although a generally accepted major player in the hepatobiliary route-based cholesterol excretion, HDL plays no significant role in TICE in mice.  相似文献   

13.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

14.
15.
Liver X receptor (LXR) ligands are currently being evaluated as potential therapeutic agents for the treatment of low HDL. The LXR ligand T0901317 elevates ATP binding cassette transporter A1 (ABCA1) and HDL levels in animal models and induces moderate lipogenesis through upregulation of sterol regulatory element binding protein 1c (SREBP1c). Because insulin may also regulate lipogenesis through SREBP1c and fatty acid synthase (FAS), we investigated the effect of an LXR ligand in hyperinsulinemic mice. Administration of T0901317 to male db/db mice for 12 days resulted in a more severe hypertriacylglycerolemia and hepatic triacylglycerol accumulation than observed in nondiabetic mice. The LXR target genes ABCA1, SREBP1c, FAS, and stearoyl-CoA desaturase 1 were upregulated by T0901317 treatment in both diabetic db/db and nondiabetic C57BLKS mice. Changes in lipogenic gene expression were independent of mouse strain, indicating that the severe lipogenesis observed in LXR ligand-treated db/db mice was not due to additive effects of insulin on lipogenic gene expression. Phosphoenolpyruvate carboxykinase expression was suppressed, suggesting that a shift from gluconeogenesis toward lipogenesis could partially explain our observations in db/db mice. Our data suggest that LXR ligands that have effects on both fatty acid and carbohydrate metabolism should be carefully evaluated in obesity, insulin, and leptin resistance.  相似文献   

16.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

17.
Besides its well established role in control of cellular cholesterol homeostasis, the liver X receptor (LXR) has been implicated in the regulation of hepatic gluconeogenesis. We investigated the role of the major hepatic LXR isoform in hepatic glucose metabolism during the feeding-to-fasting transition in vivo. In addition, we explored hepatic glucose sensing by LXR during carbohydrate refeeding. Lxralpha(-/-) mice and their wild-type littermates were subjected to a fasting-refeeding protocol and hepatic carbohydrate fluxes as well as whole body insulin sensitivity were determined in vivo by stable isotope procedures. Lxralpha(-/-) mice showed an impaired response to fasting in terms of hepatic glycogen depletion and triglyceride accumulation. Hepatic glucose 6-phosphate turnover was reduced in 9-h fasted Lxralpha(-/-) mice as compared with controls. Although hepatic gluconeogenic gene expression was increased in 9-h fasted Lxralpha(-/-) mice compared with wild-type controls, the actual gluconeogenic flux was not affected by Lxralpha deficiency. Hepatic and peripheral insulin sensitivity were similar in Lxralpha(-/-) and wild-type mice. Compared with wild-type controls, the induction of hepatic lipogenic gene expression was blunted in carbohydrate-refed Lxralpha(-/-) mice, which was associated with lower plasma triglyceride concentrations. Yet, expression of "classic" LXR target genes Abca1, Abcg5, and Abcg8 was not affected by Lxralpha deficiency in carbohydrate-refed mice. In summary, these studies identify LXRalpha as a physiologically relevant mediator of the hepatic response to fasting. However, the data do not support a role for LXR in hepatic glucose sensing.  相似文献   

18.
Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route.

Objective

Aim of this study was to determine whether stimulation of fecal neutral sterol loss during PS feeding is (partly) explained by increased intestinal cholesterol excretion and to assess the role of the cholesterol transporter Abcg5/Abcg8 herein.

Methods and Results

Wild-type mice were fed a control diet or diets enriched with increasing amounts of PS (1%, 2%, 4% or 8%, wt/wt) for two weeks. In addition, Abcg5-/- mice were fed either control or 8% PS diet. PS feeding resulted in a dose-dependent decrease of fractional cholesterol absorption (∼2–7-fold reduction) in wild-type mice and ∼80% reduction in Abcg5-/- mice. Furthermore, PS feeding led to a strong, dose-independent induction of neutral sterol excretion (3.4-fold in wild-types and 2.7-fold in Abcg5-/- mice) without changes in biliary cholesterol secretion. It was calculated that PS feeding stimulated intestinal cholesterol excretion by ∼500% in wild-type mice and by ∼250% in Abcg5-/-.

Conclusions

Our data indicate that in mice the cholesterol-lowering effects of PS are to a large extent attributable to stimulation of intestinal, non-bile derived, cholesterol excretion. The Abcg5/Abcg8 heterodimer is involved in facilitating this PS-induced flux of cholesterol.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号