首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

3.
4.
X L Li  T Moudgil  H V Vinters    D D Ho 《Journal of virology》1990,64(3):1383-1387
One neuronal cell line (SK-N-MC) was found to be susceptible to productive infection by multiple isolates of the human immunodeficiency virus type 1 (HIV-1). Characterization of SK-N-MC cells showed that these cells are neuroectodermal in origin in that they express dopamine hydroxylase, catecholamines, neuron-specific enolase, and neurofilaments. Despite their susceptibility to HIV-1 infection, SK-N-MC cells had no detectable CD4 and this infection was not blocked by anti-CD4 monoclonal antibodies (OKT4A, Leu3A) or recombinant soluble CD4. These experiments demonstrated that certain cells of neuroectodermal origin are susceptible to infection in vitro by HIV-1 via a CD4-independent mechanism.  相似文献   

5.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

6.
P Lusso  F Lori    R C Gallo 《Journal of virology》1990,64(12):6341-6344
Although human immunodeficiency virus (HIV) is the causative agent of the acquired immunodeficiency syndrome and related disorders, it has been suggested that viral cofactors may accelerate the progression of the disease. We present evidence that human T lymphoid cells productively coinfected by HIV type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) or HTLV-II generate a progeny of phenotypically mixed viral particles that allow the penetration of HIV-1 into previously nonsusceptible CD4- human cells, including mature CD8+ T lymphocytes, B lymphoid cells, epithelial cells, and skeletal muscle cells. The infection is independent of the major HIV-1 receptor, (i.e., the CD4 glycoprotein) since OKT4a, a neutralizing anti-CD4 monoclonal antibody, fails to block the penetration of HIV-1. Similarly, infection is not inhibited by monoclonal antibody M77, directed toward the neutralizing loop of the gp120 envelope glycoprotein of HIV-1. In contrast, pretreatment of the virus stock with HTLV-I-neutralizing human serum completely abolishes the penetration of phenotypically mixed HIV-1 into CD4- cells. These results suggest that HTLV-I or HTLV-II may increase the pathogenicity of HIV-1 by broadening the spectrum of its cellular tropism and, thus, favoring its spread within the organism of coinfected hosts.  相似文献   

7.
To explore the role of the CD4 molecule in human immunodeficiency virus (HIV) infection following initial virus-CD4 binding, we have characterized CD4-specific antibodies raised by immunizing an HIV-1-infected human with human recombinant soluble CD4 (rsCD4). Fabs were selected from a human recombinant Fab library constructed from the bone marrow of this immunized individual. Here, we describe a human rsCD4-specific recombinant Fab clone selected by panning the library over complexes of human rsCD4 and recombinant HIV-1 envelope protein. While this Fab does not bind to CD4-positive T-cell lines or to human T lymphocytes, it recognizes cell surface-expressed CD4 following the incubation of these cells with a recombinant form of HIV-1 gp120 or with HIV-1 virions. The Fab is not HIV-1 envelope specific, since it does not bind to recombinant gp120 or to native cell surface-expressed HIV-1 envelope proteins. As confirmation of its CD4 specificity, we show that this Fab immunoprecipitates a 55-kDa protein, corresponding to the molecular mass of cellular CD4, from an H9 cell lysate. The specificity of this human Fab provides evidence for a virus-induced conformational change in cell surface-expressed on CD4. The characterization of this altered CD4 conformation and its effects on the host cell will be important in defining postbinding events in HIV infection.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) replicates primarily in lymphoid tissues where it has ready access to activated immune competent cells. We used one of the major pathways of immune activation, namely, CD40-CD40L interactions, to study the infectability of B lymphocytes isolated from peripheral blood mononuclear cells. Highly enriched populations of B lymphocytes generated in the presence of interleukin-4 and oligomeric soluble CD40L upregulated costimulatory and activation markers, as well as HIV-1 receptors CD4 and CXCR4, but not CCR5. By using single-round competent luciferase viruses complemented with either amphotropic or HIV-derived envelopes, we found a direct correlation between upregulation of HIV-1 receptors and the susceptibility of the B lymphocytes to infection with dual-tropic and T-tropic strains of HIV-1; in contrast, cells were resistant to M-tropic strains of HIV-1. HIV-1 envelope-mediated infection was completely abolished with either an anti-CD4 monoclonal antibody or a peptide known to directly block CXCR4 usage and partially blocked with stromal cell-derived factor 1, all of which had no effect on the entry of virus pseudotyped with amphotropic envelope. Full virus replication kinetics confirmed that infection depends on CXCR4 usage. Furthermore, productive cycles of virus replication occurred rapidly yet under most conditions, without the appearance of syncytia. Thus, an activated immunological environment may induce the expression of HIV-1 receptors on B lymphocytes, priming them for infection with selective strains of HIV-1 and allowing them to serve as a potential viral reservoir.  相似文献   

9.
A Takeda  R W Sweet    F A Ennis 《Journal of virology》1990,64(11):5605-5610
Evidence of antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection via Fc receptor (FcR) was published previously (A. Takeda, C. U. Tuazon, and F. A. Ennis, Science 242:580-583, 1988). To define the entry mechanism of HIV-1 complexed with anti-HIV-1 antibody, we attempted to determine the receptor molecules responsible for mediating enhancement of HIV-1 infection of monocytic cells. Monoclonal antibodies to FcRI for immunoglobulin G substantially blocked antibody-dependent enhancement of HIV-1 infection. Furthermore, we demonstrate a requirement for the CD4 molecule in antibody-enhanced HIV-1 infection via FcR. Soluble CD4 prevented infection by HIV-1 antibody-treated virus, and enhancement of infection of virus-antibody complexes was abrogated by a monoclonal antibody to CD4 (anti-Leu3a antibody). Treatment of human macrophages with an anti-CD4 antibody also inhibited antibody-enhanced HIV-1 infection of macrophages, supporting our contention that antibody-dependent enhancement of HIV-1 infection via FcR requires CD4 interaction with the virus glycoprotein.  相似文献   

10.
The recent identification of the CC-CKR5 beta chemokine receptor as a major cofactor for entry of macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1) raises the question of whether macrophage tropism is determined by utilization of this chemokine receptor. We observe that in addition to macrophage-tropic isolates of clades A, B, and E, macrophage-tropic isolates of clade F also utilize the CC-CKR5 molecule for entry. However, using single-round replication-competent reporter viruses carrying the envelope genes of T-cell line-tropic or macrophage-tropic phenotypic recombinant and mutant HIV-1 strains in infection of stable cell lines that coexpress the CD4 and chemokine receptors, we were unable to establish a strict correlation between macrophage tropism and utilization of the CC-CKR5 chemokine receptor. This latter finding suggests that a cofactor other than CC-CKR5 serves to determine entry into primary macrophages.  相似文献   

11.
More than 10 G protein-coupled receptors (GPCRs) have been shown to act as coreceptors for infection of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We have isolated HIV-1 variants infectious to primary brain-derived CD4-positive cells (BT-3 and BT-20/N) and U87/CD4 glioma cells that are resistant to T-cell line-tropic (T-tropic), macrophage-tropic (M-tropic), and T- and M-tropic (dualtropic) (X4, R5, and R5X4) HIV-1 strains. These primary brain-derived cells were also highly susceptible to HIV-2(ROD), HIV-2(SBL6669), and SIV(mndGB-1). A factor or coreceptor that determines the susceptibility of these brain-derived cells to these HIV and SIV strains has not been fully identified. To identify this coreceptor, we examined amino acid sequences of all known HIV and SIV coreceptors and noticed that tyrosine residues are well conserved in their extracellular amino-terminal domains. By this criterion, we selected 18 GPCRs as candidates of coreceptors for HIV and SIV strains infectious to these brain-derived cells. mRNA expression of an orphan GPCR, RDC1, was detected in the brain-derived cells, the C8166 T-cell line, and peripheral blood lymphocytes, all of which are susceptible to HIV-1 variants, but not in macrophages, which are resistant to them. When a CD4-expressing cell line, NP-2/CD4, which shows strict resistance to infection not only with HIV-1 but also with HIV-2 or SIV, was transduced with the RDC1 gene, the cells became highly susceptible to HIV-2 and SIV(mnd) strains but to neither M- nor T-tropic HIV-1 strains. The cells also acquired a low susceptibility to the HIV-1 variants. These findings indicate that RDC1 is a novel coreceptor for several HIV-1, HIV-2, and SIV strains which infect brain-derived cells.  相似文献   

12.
Macrophages infected with HIV-1 produce high levels of M-CSF and macrophage-inflammatory protein-1alpha (MIP-1alpha). M-CSF facilitates the growth and differentiation of macrophages, while the chemotactic properties of MIP-1alpha attract both T lymphocytes and macrophages to the site of HIV infection. Studies described in this work indicate M-CSF may function in an autocrine/paracrine manner to sustain HIV replication, and data suggest possible therapeutic strategies for decreasing viral load following HIV infection. We show that macrophage infection with measles virus or respiratory syncytial virus, in contrast to HIV-1, results in production of MIP-1alpha, but not M-CSF. Thus, M-CSF appears to be specifically produced upon infection of macrophages with HIV-1. Furthermore, addition of M-CSF antagonists to HIV-1-infected macrophages, including anti-M-CSF monoclonal or polyclonal Abs or soluble M-CSF receptors, dramatically inhibited HIV-1 replication and reduced production of MIP-1alpha. Our results suggest that biologic antagonists for M-CSF may represent novel strategies for inhibiting the spread of HIV-1 by 1) blocking virus replication in macrophages, 2) reducing recruitment of HIV-susceptible T cells and macrophages by MIP-1alpha, and 3) preventing the establishment and maintenance of infected macrophages as a reservoir for HIV.  相似文献   

13.
Genome sequences of transmitted/founder (T/F) HIV-1 have been inferred by analyzing single genome amplicons of acute infection plasma viral RNA in the context of a mathematical model of random virus evolution; however, few of these T/F sequences have been molecularly cloned and biologically characterized. Here, we describe the derivation and biological analysis of ten infectious molecular clones, each representing a T/F genome responsible for productive HIV-1 clade B clinical infection. Each of the T/F viruses primarily utilized the CCR5 coreceptor for entry and replicated efficiently in primary human CD4(+) T lymphocytes. This result supports the conclusion that single genome amplification-derived sequences from acute infection allow for the inference of T/F viral genomes that are consistently replication competent. Studies with monocyte-derived macrophages (MDM) demonstrated various levels of replication among the T/F viruses. Although all T/F viruses replicated in MDM, the overall replication efficiency was significantly lower compared to prototypic "highly macrophage-tropic" virus strains. This phenotype was transferable by expressing the env genes in an isogenic proviral DNA backbone, indicating that T/F virus macrophage tropism mapped to Env. Furthermore, significantly higher concentrations of soluble CD4 were required to inhibit T/F virus infection compared to prototypic macrophage-tropic virus strains. Our findings suggest that the acquisition of clinical HIV-1 subtype B infection occurs by mucosal exposure to virus that is not highly macrophage tropic and that the generation and initial biological characterization of 10 clade B T/F infectious molecular clones provides new opportunities to probe virus-host interactions involved in HIV-1 transmission.  相似文献   

14.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

15.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

16.
The establishment of HIV type 1 (HIV-1) infection is initiated by the stable attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between virus-encoded gp120 and cell surface CD4, a number of distinct interactions influence binding of HIV-1 to host cells. In this study, we report that galectin-1, a dimeric beta-galactoside-binding protein, promotes infection with R5, X4, and R5X4 variants. Galectin-1 acts as a soluble adhesion molecule by facilitating attachment of HIV-1 to the cell surface. This postulate is based on experiments where galectin-1 rendered HIV-1 particles more refractory to various agents that block HIV-1 adsorption and coreceptor binding (i.e., a blocking anti-CD4, soluble CD4, human anti-HIV-1 polyclonal Abs; stromal cell-derived factor-1alpha; RANTES). Experiments performed with the fusion inhibitor T-20 confirmed that galectin-1 is primarily affecting HIV-1 attachment. The relevance of the present findings for the pathogenesis of HIV-1 infection is provided by the fact that galectin-1 is abundantly expressed in the thymus and lymph nodes, organs that represent major reservoirs for HIV-1. Moreover, galectin-1 is secreted by activated CD8(+) T lymphocytes, which are found in high numbers in HIV-1-positive patients. Therefore, it is proposed that galectin-1, which is released in an exocrine fashion at HIV-1 replication sites, can cross-link HIV-1 and target cells and promote a firmer adhesion of the virus to the cell surface, thereby augmenting the efficiency of the infection process. Overall, our findings suggest that galectin-1 might affect the pathogenesis of HIV-1 infection.  相似文献   

17.
We have examined the influence of the V1/V2 region of the human immunodeficiency virus type 1 (HIV-1) gp120 on certain biologic properties of the virus. We observed that on the genomic background of the T-cell-line-tropic strain, HIV-1SF2mc, both the V1 and V2 domains of the macrophage-tropic strain, HIV-1SF162mc, in addition to the required V3 domain, are necessary to attain full macrophage tropism. Furthermore, the V2 domain modulates the sensitivity of HIV-1 to soluble CD4 neutralization. Structural studies of recombinant and mutant envelope glycoproteins suggest that the function of the V1/V2 region is to interact with the V3 domain and confer on the envelope gp120 of HIV-1SF2mc a conformation more similar to that of the macrophage-tropic strain HIV-1SF162mc. The conformation of the envelope gp120 appears to be strain specific and plays an important role in determining HIV-1 tissue tropism and sensitivity to soluble CD4 neutralization.  相似文献   

18.
Neutrophils dominate acute inflammatory responses that generally evolve into chronic inflammatory reactions mediated by monocyte/macrophages and lymphocytes. The latter cell types also serve as major targets for human immunodeficiency virus type 1 (HIV-1). In this study we have investigated the role of neutrophil products, particularly cathepsin G, in HIV infection. Cathepsin G induced chemotaxis and production of proinflammatory cytokines by macrophages but not CD4(+) T cells. Pretreatment with cathepsin G markedly increased susceptibility of macrophages but not CD4(+) T cells to acute HIV-1 infection. When macrophages were exposed to pertussis toxin prior to cathepsin G treatment, the cathepsin G-mediated effect was almost abrogated, suggesting that enhancement of HIV-1 replication by cathepsin G requires Gi protein-mediated signal transduction. Although prolonged exposure to cathepsin G suppressed HIV infection of macrophages, serine protease inhibitors, which are exuded from the bloodstream later during inflammatory processes, neutralized the inhibitory effect. Neutrophil extracts or supernatants from neutrophil cultures, which contain cathepsin G, had effects similar to purified cathepsin G. Thus, cathepsin G, and possibly other neutrophil-derived serine proteases, may have multiple activities in HIV-1 infection of macrophages, including chemoattraction of monocyte/macrophages (HIV-1 targets) to inflamed tissue, activation of target cells, and increase in their susceptibility to acute HIV-1 infection.  相似文献   

19.
The stilbene disulfonic acids 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid and, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid bound the variable-1 immunoglobulin-like domain of CD4 on JM cells. The interaction blocked the binding of the anti-CD4 monoclonal antibody OKT4A and the envelope glycoprotein gp120 of the human immunodeficiency virus type-1 (HIV-1). DIDS inhibited the acute infection of CD4+ cells by HIV-1 with a potency (IC50 approximately 30 microM) similar to that which blocked gp120 binding (IC50 approximately 20 microM) to the cellular antigen. Pretreating uninfected CD4+ C8166 cells with DIDS blocked their fusion with chronically infected gp120+ cells. DIDS covalently and selectively modified lysine 90 of soluble CD4 and abolished the gp120-binding and antiviral properties of the recombinant protein. When added to cells productively infected with HIV-1, DIDS blocked virus growth and cleared cultures of syncytia without inhibiting cellular proliferation. The stilbene disulfonic acids are a novel class of site-specific CD4 antagonists that block multiple CD4-dependent events associated with acute and established HIV-1 infections.  相似文献   

20.
Human macrophages express chemokine receptors that act as coreceptors for human immunodeficiency virus type 1 (HIV-1) and are major targets for HIV-1 infection in vivo. The effects of cytokines on HIV-1 infection of macrophages and on the expression of CCR5, the principal coreceptor for macrophage-tropic viruses, have now been investigated. Expression of CCR5 on the surface of freshly isolated human monocytes was virtually undetectable by flow cytometry with the monoclonal antibody 5C7. However, after culture of monocytes for 48 h in serum-free medium, approximately 30% of the resulting macrophages expressed CCR5 and the cells were susceptible to infection by macrophage-tropic HIV-1. Addition of either macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) to the cultures markedly increased both the extent of HIV-1 entry and replication as well as surface expression of CCR5. In contrast, addition of the T-helper 2 (Th2) cell-derived cytokine interleukin-4 (IL-4) or IL-13 prevented the expression of CCR5 induced by culture in medium alone, and IL-4 inhibited virus entry, replication, and cytopathicity under these conditions. IL-4 or IL-13 also prevented the stimulatory effects of M-CSF or GM-CSF on CCR5 expression as well as HIV-1 entry and replication. In addition, IL-4 reversed the increase in CCR5 expression induced by pretreatment of cells with M-CSF. Although IL-10 also inhibits HIV-1 replication in macrophages, it did not suppress surface CCR5 expression induced by colony-stimulating factors. These results indicate that the cytokine environment determines the susceptibility of macrophages to HIV-1 infection by various mechanisms, one of which is the regulation of HIV-1 coreceptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号