共查询到20条相似文献,搜索用时 16 毫秒
1.
Aftanas LI Reva NV Varlamov AA Pavlov SV Makhnev VP 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2003,53(4):485-494
Event-related synchronization (ERS) and desynchronization (ERD) in delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma were measured in 20 healthy right-handed subjects in response to IAPS stimuli with low, moderate, and high arousal reactions. The 62-channel EEG was simultaneously recorded while subjects viewed sequentially presented pictures and subjectively rated them after each presentation. The results show that emotionally loaded stimuli induced higher ERS in the delta, theta1, theta2, beta1, beta3, and gamma bands along with combined ERD and ERS effects in alpha2 band. As to hemispheric asymmetries, the effects of emotional arousal were restricted not only to right parietal (theta1 and theta2 ERS, alpha2 ERD) but also to left frontal (theta2 ERS) regions. In terms of affective chronometry, lower theta was the first to catch the affective salience of incoming stimuli (time window 0-600 ms after the stimulus input). For theta2, alpha2, and gamma bands this process was delayed to 600-1000 ms. 相似文献
2.
3.
《Electronic Notes in Theoretical Computer Science》1997,104(3):199-206
To investigate the activity of cortical regions in the control of movement, we studied event-related desynchronization/synchronization (ERD/ERS), event-related coherence (ERC), and phase coherence in 29-channel EEGs from 9 subjects performing self-paced movements of the right index finger. Movement preparation and execution produced ERD over the sensorimotor areas at 10 Hz and 20 Hz, followed by ERS. ERD corresponded spatiotemporally to an increase in coherence over the frontocentral areas. For both frequency bands, ERD began over the left sensorimotor areas and became bilateral at the time of movement onset. The coherence increase with frontal areas began in the left central areas and became symmetrical after EMG onset. The ERD and coherence increase was longer at 10 Hz than at 20 Hz. Phase coherence at 10 Hz showed a lead of anterior regions to posterior regions throughout the time period, and at 20 Hz showed a tendency toward zero phase delay corresponding with the movement. EEG desynchronization parallels functional coupling over sensorimotor and frontal areas. Event-related coherence and phase coherence findings implicate the frontal lobes in control of movement planning and execution. The involvement of different frequency bands with different timings may represent parallel changes in the cortical network. 相似文献
4.
5.
Aftans LI Pavlov SV Reva NV Varlamov AA 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2004,54(4):473-481
The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing. 相似文献
6.
Aftanas LI Savotina LN Makhnev VP Reva NV 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2004,90(11):1314-1323
Up to now, mechanisms of neurovisceral integration are not clear. The main objective of the present investigation consisted in studying cortical concomitants of sympathetic activity during emotional perception. The 62-channel EEG and skin conductance response (SCR) were recorded while right-handed healthy participants (n-33) viewed sequentially presented neutral, pleasant, and unpleasant pictures. The event-related synchronization (ERS) and desynchronization were measured in different frequency bands. Relying on median split of SCR amplitudes elicited by the presented stimuli the participants were segregated into groups with low (SCR-) and high (SCR+) autonomous activity. In was revealed that group differences were associated with power changes in the low (4-6 Hz) theta band only. For both groups in the early test period (up to 1 s after stimulus onset), emotional vs. neutral stimuli induced larger theta-ERS over posterior cortical regions with greater impact on the right parieto-temporo-occipital regions. At the later phases (2-6 s after stimulus onset), only the SCR group retained emotion-related greater right hemisphere synchronization. It is concluded that the right parieto-temporo-occipital cortex mediates mechanisms of motivated attention and sympathetic activation. 相似文献
7.
8.
L. B. Oknina S. V. Kuptsova A. S. Romanov E. L. Masherow O. A. Kuznetsova E. V. Sharova 《Human physiology》2012,38(4):348-353
The goal of the pilot study was to analyze the characteristics of changes in short EEG segments recorded from 32 sites during perception of musical melodies by healthy subjects depending on logical (recognition) and emotional (pleasant/unpleasant) estimation of the melody. For this purpose, the changes in event-related synchronization/desynchronization and the indices of wavelet synchrony of EEG responses were compared in 31 healthy subjects (18 to 60 years old). It has been shown that melody recognition during logical estimation of music is accompanied by event-related desynchronization in the left frontal-parietal-temporal area. Emotional estimation of a melody is characterized by event-related synchronization in the left frontal-temporal area for pleasant melodies, desynchronization in the temporal area for unpleasant melodies, and desynchronization in the occipital area for melodies inducing no emotional response. The analysis of EEG wavelet synchronization characterizing reactive changes in the interaction between cortical areas shows that the most distinct topographic differences are associated with the type of music processing: logical (familiar/unfamiliar) or emotional (pleasant/unpleasant). The changes in interhemispheric connections between the associative cortical areas (central, frontal, temporal) are greater during emotional estimation, while the changes in inter- and intrahemispheric connections between the projection areas of the acoustic analyzer (temporal area) are greater during logical estimation. It is assumed that the revealed event-related synchronization/desynchronization is most likely to reflect the activation component of musical fragment estimation, whereas wavelet analysis provides insight into the character of musical stimulus processing. 相似文献
9.
脑电事件相关去同步化和同步化的神经元群模型 总被引:5,自引:0,他引:5
利用基于丘脑-皮层网络的神经元群模型,研究被试者在某种认知状态下脑功能区的连接状态。模型包括三个模块,分别对应脑电头皮电极C3、Cz、C4记录的三个皮质区。模型外部输入包括用高斯白噪声表示的上行传入感受器信号、用直流偏移表示的皮质对丘脑的兴奋性输入、用指数衰减表示的来自脑千和前脑基底神经元的调制信号。模型输出的兴奋性神经元群的平均膜电位反映脑电记录的局部电位。改变模型输入,进行多次仿真试验并进行线性和非线性分析。研究结果显示:仿真输出信号的alpha频带功率谱有与实际脑机接口实验一致的事件相关去同步化和同步化现象;模型中功能相近的区域间有更强的耦合,随着耦合强度的增加,输出信号间的相关性和同步性均增加。 相似文献
10.
How task focus affects recognition of change in vocal emotion remains in debate. In this study, we investigated the role of task focus for change detection in emotional prosody by measuring changes in event-related electroencephalogram (EEG) power. EEG was recorded for prosodies with and without emotion change while subjects performed emotion change detection task (explicit) and visual probe detection task (implicit). We found that vocal emotion change induced theta event-related synchronization during 100–600 ms regardless of task focus. More importantly, vocal emotion change induced significant beta event-related desynchronization during 400–750 ms under explicit instead of implicit task condition. These findings suggest that the detection of emotional changes is independent of task focus, while the task focus effect in neural processing of vocal emotion change is specific to the integration of emotional deviations. 相似文献
11.
Kaplan AIa Fingelkurts AnA Fingelkurts AlA Shishkin SL Ivashko RM 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2000,50(4):624-637
Topographic features of spatial synchronization of sharp changes, or rapid transition processes (RTP), were studied in human EEG recorded from longitudinal and transversal electrode arrays. A new algorithm, the EEG Threshold Scanning, was proposed for the detection of the RTP. Synchronization of the RTP was estimated by Operational Synchrony Index (OSI) based on the difference between the actual and stochastic frequency of RTP coincidence in a pair of EEG channels. The relationship between the OSI and interelectrode distance was not monotonous. The OSI depended also on the extent of morpho-functional similarity between two cortical areas. Similar results were obtained for crosscorrelation calculated for the same pairs of the EEG derivations. The existence of dynamic spatial modules which incorporate different brain areas by complementary stabilization of their functional states is discussed. 相似文献
12.
13.
14.
This study is carried out on single (not averaged) recordings combining the spontaneous activity preceding the stimulus onset and the EP recorded upon acoustical stimulation. These recordings, which we call EEG-EPograms, are measured simultaneously from different subdural structures, such as the auditory cortex, medial geniculate nucleus, inferior colliculus, reticular formation and the hippocampus of the cat brain during the slow wave sleep stage. Using a combined analysis procedure (C.A.P.), the relevant frequency components of spontaneous EEG and EPs, recorded simultaneously from these brain nuclei, are analyzed according to the consistent selectivity bands depicted by the determined amplitude-frequency characteristics for the SWS-stage. In parallel with the results which we obtained for the waking stage, these analyses provide also the following information: (1) there is an important congruency in the time courses of simultaneous response components in common frequency bands, especially in the alpha and beta frequency ranges; (2) there exist significant coupling and synchrony between the evoked amplitude enhancements in the simultaneously recorded single response components; (3) the inter-nuclei coherency in the brain's electrical activity is enormously increased upon stimulation; (4) the evoked response magnitude can be predicted, with reasonable accuracy, from the spontaneous activity preceding the stimulus. All these findings are discussed with reference to those obtained for the waking stage.This study is supported by the Grant TAG-364 of the Scientific and Technical Research Council of Turkey 相似文献
15.
《Electronic Notes in Theoretical Computer Science》1991,80(1):16-20
The relationship between the latencies and amplitudes of the N1 and P2 components of the visual evoked potential (VEP) and the psychophysiological state of the brain immediately preceding the time of the stimulus has been investigated in 7 male subjects. Power spectral measures in the delta, theta, alpha and beta bands of the 1 sec pre-stimulus EEG were used to assess the brain state, and low intensity flashes, delivered randomly between 2 and 6 whole seconds, were used as the stimuli. Trials were ranked separately according to the relative amounts of pre-stimulus power in each EEG band and were partitioned into groups by an equal pre-stimulus spectral power criterion. Averaged EPs were computed from these groups and multiple regression analysis was used to relate pre-stimulus spectral power values to EP features. Five of the 7 subjects displayed consistent increases in N1-P2 amplitude as a function of increasing pre-stimulus relative alpha power. The between-subjects effect of pre-stimulus EEG on N1 latency was small, but was moderate for P2 latency (both significant). Both N1 and P2 latency were found to decrease with increasing amounts of pre-stimulus relative delta and theta power. 相似文献
16.
Stimulation of dopamine D-1 receptors by SKF 38393 induces EEG desynchronization and behavioral arousal 总被引:1,自引:0,他引:1
The dopamine D-1 receptor agonist SKF 38393 dose-dependently (2.5-10 mg/kg) induced desynchronization of the electroencephalographic (EEG) activity and behavioral arousal in both rabbits and rats. Unlike apomorphine, SKF 38393 elicited no signs of stereotyped behavior in rabbits and minimal effects, such as episodes of grooming, in rats. The effects of SKF 38393 10 mg/kg on the EEG were prevented by the selective D-1 receptor antagonist SCH 23390 at a dose as low as 0.003 mg/kg, but not by the D-2 antagonist (-)-sulpiride (25-50 mg/kg). These data provide evidence of a role of D-1 receptors in the generation of EEG activity related to behavioral arousal. In addition, this model is a valuable tool to functionally evaluate the D-1 antagonistic properties of neuroleptics. 相似文献
17.
18.
In this study, we analyze the important relation between the spontaneous and evoked activities of the substructures of the cat brain, such as the reticular formation, hippocampus, inferior colliculus, medial geniculate nucleus and acoustical cortex, with an ensemble of systems theory methods consisting of the following steps: (1) single auditory and/or visual evoked potentials (EPs) and the spontaneous activities (EEG) just preceding the stimuli are recorded from the brain center under study; (2) selectively averaged evoked potentials (SAEPs) are obtained from the recorded EPs; (3) amplitude frequency characteristics are computed from the AAEPs by means of Fourier transform; (4) the single EEG-EP sweeps are theoretically pass-band filtered with adequate band limits determined according to the selectivities revealed by the amplitude characteristics; (5) the EEG and EP components obtained in this way are compared with regard to the amplification in the population response upon the application of the stimulus. The results of this analysis support quantitatively our prediction of various types of resonance phenomena in a number of nuclei in the cat brain and in a large scale of frequencies from 1 Hz to 1000 Hz and show that the amplification factor related to resonance phenomena has probabilistic nature. Therefore, the analogy which we have recently drawn between the behaviors of a neural population and a random-phase probabilistic harmonic oscillator is extended by assigning also the amplitude and the frequency of the oscillations as random variables. A working hypothesis for the dynamics of neuronal populations is elaborated accordingly.Presented in Part at the Third European Meeting on Cybernetics and Systems Research 1976 in Vienna, April 20–23, 1976Supported by Grant No. TAG-345 of the Scientific and Technical Research Council of Turkey 相似文献
19.
20.
Evoked potentials – the brain's transient electrical responses to discrete stimuli – are modeled as impulse responses using
a continuum model of brain electrical activity. Previous models of ongoing brain activity are refined by adding an improved
model of thalamic connectivity and modulation, and by allowing for two populations of excitatory cortical neurons distinguished
by their axonal ranges. Evoked potentials are shown to be modelable as an impulse response that is a sum of component responses.
The component occurring about 100 ms poststimulus is attributed to sensory activation, and this, together with positive and
negative feedback pathways between the cortex and thalamus, results in subsequent peaks and troughs that semiquantitatively
reproduce those of observed evoked potentials. Modulation of the strengths of positive and negative feedback, in ways consistent
with psychological theories of attentional focus, results in d istinct responses resembling those seen in experiments involving
attentional changes. The modeled impulse responses reproduce key features of typical experimental evoked response potentials:
timing, relative amplitude, and number of peaks. The same model, with further modulation of feedback, also reproduces experimental
spectra. Together, these results mean that a broad range of ongoing and transient electrocortical activity can be understood
within a common framework, which is parameterized by values that are directly related to physiological and anatomical quantities.
Received: 22 May 2001 / Accepted in revised form: 8 January 2002 相似文献