首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although apoptosis contributes to myocardial cell death in the ischemia-reperfused heart, the molecular basis of apoptosis is poorly understood. Apoptosis-inducing factor (AIF) has been characterized as a caspase-independent death effector. Upon the induction of apoptosis, mitochondrial AIF is released to the cytoplasm and then enters the nucleus, in which it induces chromatin condensation and 50 kbp DNA fragmentation. In the present study, we examined the role of AIF in ischemia-reperfusion injury in isolated rat hearts. AIF was detected in the cytosolic and nuclear fractions of hearts subjected to ischemia-reperfusion, whereas it was detected only in the mitochondria of control hearts. Moreover, AIF release increased in a reperfusion time-dependent manner. Pulse field gel electrophoresis revealed that 50 kbp DNA fragments were produced by ischemia/reperfusion. In contrast, cytochrome c release and the activation of caspase-3 did not occur to a significant extent. Moreover, ischemic preconditioning attenuated the AIF release and the 50 kbp DNA fragmentation. These results suggest that AIF-dependent apoptosis is likely to attribute to myocardial cell death in the ischemia-reperfused heart and that it is related with the protective effect of ischemic preconditioning.  相似文献   

2.
Apoptosis-inducing factor (AIF) is a caspase-independent apoptosis effector. UVA-induced Raji cell death was not completely inhibited by pan-caspase inhibitor zVAD.fmk. Moreover, AIF translocated from its normal location, the mitochondrial intermembrane space, into the nucleus, and induced peripheral chromatin condensation during the early stage of UVA-inducing cell death. Enforced expression of AIF can induce Raji cell death in a caspase-independent manner. Down-regulation of AIF protein level by RNA interference (RNAi) can reduce UVA-induced Raji cell death, but the combination of down-regulation of AIF and zVAD.fmk almost completely inhibited UVA-induced Raji cell death. All these suggest that caspase and AIF are two independent pathways and that UVA-induced Raji cell death is dependent on caspase and AIF.  相似文献   

3.
The techniques for inducing the death of specific cells in tissue has attracted attention as new methodologies for studying cell function and tissue regeneration. In this study, we show that a sequential process of targeted cell death and removal can be triggered by short-term exposure of near-infrared femtosecond laser pulses. Kinetic analysis of the intracellular accumulation of trypan blue and the assay of caspase activity revealed that femtosecond laser pulses induced immediate disturbance of plasma membrane integrity followed by apoptosis-like cell death. Yet, adjacent cells showed no sign of membrane damage and no increased caspase activity. The laser-exposed cells eventually detached from the substrate after a delay of >54 min while adjacent cells remained intact. On the base of in vitro experiments, we applied the same approach to ablate targeted single cardiac cells of a live zebrafish heart. The ability of inducing targeted cell death with femtosecond laser pulses should find broad applications that benefit from precise cellular manipulation at the level of single cells in vivo and in vitro.  相似文献   

4.
Apoptosis might proceed through the activation of both caspase-dependent and -independent pathways. Apoptosis-inducing factor (AIF) was discovered as the first protein that mediated caspase-independent cell death. Initially, it was regarded as a soluble protein residing in the intermembrane space of mitochondria, from where it could be exported to the nucleus to participate in large-scale DNA fragmentation and chromatin condensation. However, later it was demonstrated that AIF is N-terminally anchored to the inner mitochondrial membrane. Hence, AIF must be liberated from its membrane anchor prior to being released into the cytosol. The current knowledge about the molecular mechanisms regulating the processing and release of AIF from the mitochondria will be summarized and discussed in this review.  相似文献   

5.
Wang L  Liu L  Shi Y  Cao H  Chaturvedi R  Calcutt MW  Hu T  Ren X  Wilson KT  Polk DB  Yan F 《PloS one》2012,7(5):e36418
Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc(min) mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.  相似文献   

6.
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.  相似文献   

7.
Zhou Y  Feng X  Koh DW 《Biochemistry》2011,50(14):2850-2859
We previously demonstrated that the absence of poly(ADP-ribose) glycohydrolase (PARG) led to increased cell death following DNA-damaging treatments. Here, we investigated cell death pathways following UV treatment. Decreased amounts of PARG-null embryonic trophoblast stem (TS) cells were observed following doses of 10-100 J/m2 as compared to wild-type cells. In wild-type cells, caspase-cleaved poly(ADP-ribose) polymerase-1 (PARP-1) and activated caspase-3 were detected 12-24 h after UV treatment. Surprisingly, both were detected at decreased levels only after 24 h in PARG-null TS cells, indicating a decreased level and delayed presence of caspase-mediated events. Further, a time- and dose-dependent accumulation of poly(ADP-ribose) (PAR) levels after UV was observed in PARG-null TS cells and not in wild-type cells. Determination of the levels of nicotinamide adenine dinucleotide (NAD+), the substrate for PAR synthesis and a coenzyme in cellular redox reactions, demonstrated a UV dose-dependent decrease in the level of NAD+ in wild-type cells, while NAD+ levels in PARG-null TS cells remained at higher levels. This indicates no depletion of NAD+ in PARG-null TS cells following increased levels of PAR. Lastly, cell death mediated by apoptosis-inducing factor (AIF) was analyzed because of its dependence on increased PAR levels. The results demonstrate nuclear AIF translocation only in PARG-null TS cells, which demonstrates the presence of AIF-mediated cell death. Herein, we provide compelling evidence that the absence of PARG leads to decreased caspase-3 activity and the specific activation of AIF-mediated cell death. Therefore, the absence of PARG may provide a strategy for specifically inducing an alternative apoptotic pathway.  相似文献   

8.
Apoptosis-inducing factor (AIF) is implicated in caspase-independent apoptotic-like death. AIF released from mitochondria translocates to the nucleus, where it mediates some apoptotic events such as chromatin condensation and DNA degradation. Here, the role of AIF in the neuronal death was studied under physiological conditions. When we analyzed the cellular localization of AIF during cerebellar development, we found a significant increase in the number of neurons with nuclear AIF localization in an age-dependent manner. On the other hand, cerebellar granule neurons (CGN) chronically cultured in low concentration of potassium (5 mM; K5) die with apoptotic-like characteristics after five days. In the present study we found that K5 induces a caspase-dependent apoptotic-like death of CGN as well as a late nuclear translocation of AIF. When CGN death induced by K5 was carried out in the presence of a general inhibitor of caspases, there was a slight decrement of cell death, but neurons eventually died by showing apoptotic-like features such as phosphatidylserine translocation and nuclear condensation. Besides, there was a significant increment of nuclear AIF translocation. These findings support the idea that AIF could be involved in apoptotic-like death of CGN and that it could be an alternative mechanism of neuronal death during cerebellar development.  相似文献   

9.
The lymphoid protein T-cell ubiquitin ligand (TULA)/suppressor of T-cell receptor signaling (Sts)-2 is associated with c-Cbl and ubiquitylated proteins and has been implicated in the regulation of signaling mediated by protein-tyrosine kinases. The results presented in this report indicate that TULA facilitates T-cell apoptosis independent of either T-cell receptor/CD3-mediated signaling or caspase activity. Mass spectrometry-based analysis of protein-protein interactions of TULA demonstrates that TULA binds to the apoptosis-inducing protein AIF, which has previously been shown to function as a key factor of caspase-independent apoptosis. Using RNA interference, we demonstrate that AIF is essential for the apoptotic effect of TULA. Analysis of the subcellular localization of TULA and AIF together with the functional analysis of TULA mutants is consistent with the idea that TULA enhances the apoptotic effect of AIF by facilitating the interactions of AIF with its apoptotic co-factors, which remain to be identified. Overall, our results shed new light on the biological functions of TULA, a recently discovered protein, describing its role as one of very few known functional interactors of AIF.  相似文献   

10.
In attempting to produce the HAP, endoplasmic reticulum (ER) targeted apoptosis-inducing protein, as a GST-fusion protein we found that the expression of HAP, but not GST alone, induced bacterial cell death. The HAP protein inhibited the bacterial growth within 30 min after inducting HAP expression. The transmission electron microscopic examination revealed that the morphology of the bacterial cells expressing hap was changed dramatically: unusually elongated phenotype compared with those of controls and finally leading to cell death. The lethality of HAP was relieved by the addition of vitamin E as a reducing agent and under anaerobic growth conditions. These results suggest that a trace amount of HAP induces bacterial cell death and the death is related with reactive oxygen species (ROS).  相似文献   

11.
Mechanism of cell death induction by nitroxide and hyperthermia   总被引:6,自引:0,他引:6  
Heat stress and nitroxides induce reactive oxygen species (ROS) and proapoptotic effects. The underlying mechanisms remain largely elusive. Here we report that Tempo (2,2,6,6-tetramethylpiperidine-N-oxyl) is a potent thermosensitizer for promoting cell death in human leukemia U937 cells. Treatment with Tempo (10 mM, 37 degrees C/30 min) and hyperthermia (44 degrees C/30 min) induced 30 and 70-80% apoptosis, respectively, through Bax-mediated cytochrome c release and DEVDase activation. The Tempo/heat combination also caused Bax-mediated cytochrome c release, but switched heat-induced apoptosis to the particular pyknotic cell death, resulting in the irreparable inhibition of proliferation. Tempo and heat stress, but not the combination, caused an early transient elevation of H2O2/O2*- and a late induction of only O2*-, respectively. Mitochondrial Ca2+ overloads were indistinguishable after any treatment. Heat stress induced the pan-caspase inhibitor zVAD-fmk-suppressible low-Deltapsi (mitochondrial membrane potential) in 75% of cells as a result of DEVDase activation. In contrast, Tempo yielded low-Deltapsi by deprivation of the mitochondrial H+ gradient. The combined treatment induced 97% zVAD-resistant low-Deltapsi cells through irreversible mitochondrial dysfunction. Together, thus, Tempo or heat stress induced Bax-mediated mitochondrial apoptosis with the possible help of ROS or mitochondrial Ca2+, and Tempo when combined with hyperthermia acts a sensitizer by inducing irreparable pyknotic cell death through irreversible mitochondrial dysfunction.  相似文献   

12.
Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.  相似文献   

13.
Although hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain, their effects and mechanism of action under pathological conditions remain to be determined. Over-activation of the N-methyl-d-aspartate (NMDA) receptor, an ionotropic glutamate receptor, has been implicated in a variety of neurological and neurodegenerative disorders. We investigated the effects of HGF on the NMDA-induced cell death in cultured hippocampal neurons and sought to explore their mechanisms. NMDA-induced cell death and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were prevented by HGF treatment. Although neither the total amounts nor the mitochondrial localization of Bax, Bcl-2 and Bcl-xL were affected, caspase 3 activity was increased after NMDA exposure. Treatment with HGF partially prevented this NMDA-induced activation of caspase 3. Although the amount of apoptosis-inducing factor (AIF) was not altered, translocation of AIF into the nucleus was detected after NMDA exposure. This NMDA-induced AIF translocation was reduced by treatment with HGF. In addition, increased poly(ADP-ribose) polymer formation after NMDA exposure was attenuated by treatment with HGF. These results suggest that the protective effects of HGF against NMDA-induced neurotoxicity are mediated via the partial prevention of caspase 3 activity and the inhibition of AIF translocation to the nucleus.  相似文献   

14.
15.
Activation of metabotropic glutamate receptor 5 (mGluR5) has been shown to reduce caspase-dependent apoptosis in primary neuronal cultures induced by staurosporine and etoposide. beta-Amyloid (Abeta)-induced neurotoxicity in culture appears to be in part caspase mediated. In the present studies the effects of treatment with an mGluR5 agonist or antagonist on Abeta-induced neuronal apoptosis were examined in rat cortical neuronal cultures. Pretreatment with the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) markedly reduced the number of apoptotic cells after exposure to Abeta (25-35), as well as associated LDH release. Blockade of mGluR5 by the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP) attenuated these effects of CHPG. A similar neuroprotective effect of mGluR5 activation by CHPG was observed in cultures treated with full-length Abeta peptide (1-42). CHPG attenuated Abeta (25-35)-induced cytochrome c release and decreased levels of active caspase-3 protein. CHPG also reduced translocation of apoptosis-inducing factor (AIF) induced by Abeta (25-35). Thus, mGluR5 activation limits the release of mitochondrial proteins associated with induction of both caspase-dependent and -independent apoptosis.  相似文献   

16.
Cyclophilin D (CyPD) is thought to sensitize opening of the mitochondrial permeability transition pore (mPTP) based on the findings that cyclosporin A (CsA), a pseudo-CyPD substrate, hyperpolarizes the mitochondrial membrane potential (DeltaPsi) and inhibits apoptosis. We provide evidence that contrasts with this model. Using live cell imaging and two photon microscopy, we report that overexpression of CyPD desensitizes HEK293 and rat glioma C6 cells to apoptotic stimuli. By site-directed mutagenesis of CyPD that compromises peptidyl-prolyl cis-trans isomerase (PPIase) activity, we demonstrate that the mechanism involved in this protective effect requires PPIase activity. Furthermore, we show that, under resting conditions, DeltaPsi is hyperpolarized in CyPD wild type-overexpressing cells but not in cells overexpressing mutant forms of CyPD that lack PPIase activity. Finally, in glutathione S-transferase (GST) pull-down assays, we demonstrate that CyPD binding to the adenine nucleotide translocator (ANT), which is considered to be the core component of the mPTP, is not affected by the loss of PPIase activity. Collectively, our data suggest that CyPD should be viewed as a cell survival-signaling molecule and indicate a protective role of CyPD against apoptosis that is mediated by one or more targets other than the ANT.  相似文献   

17.
Tumor-associated antigens that can be recognized by the immune system include the MAGE-family, p53, MUC-1, HER2/neu and p21ras. Despite their expression of these distinct antigens, tumor elimination by the immune system is often inefficient. Postulated mechanisms include insufficient expression of co-stimulatory or adhesion molecules by tumor cells, or defective processing and presentation of antigens on their cell surfaces. Tumor cells may also evade immune attack by expressing CD95 (APO-1/Fas) ligand or other molecules that induce apoptosis in activated T cells. Here we describe RCAS1 (receptor-binding cancer antigen expressed on SiSo cells), a membrane molecule expressed on human cancer cells. RCAS1 acts as a ligand for a putative receptor present on various human cell lines and normal peripheral lymphocytes such as T, B and NK cells. The receptor expression was enhanced by activation of the lymphocytes. RCAS1 inhibited the in vitro growth of receptor-expressing cells and induced apoptotic cell death. Given these results, tumor cells may evade immune surveillance by expression of RCAS1, which would suppress clonal expansion and induce apoptosis in RCAS1 receptor-positive immune cells.  相似文献   

18.
Therapeutic peptides and small molecules, rationally designed to trigger cell death have attracted strong attention. Cell death inducible peptides were screened from amino acid sequence of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Using Fmoc solid phase synthesis, cellulose membrane-bound octameric peptide library of TRAIL scan was prepared and cell viability assay was directly performed on peptide disk with Jurkat cells. Six peptide sequences that could induce cell death were found. Peptide sequence with RNSCWSKD (TRAIL(227-234)) that exist in the zinc-binding site revealed high cell death inducible activity. Apoptotic cell death was observed when cells were treated with soluble synthesized peptide.  相似文献   

19.
Atherosclerosis and coronary heart disease are causing high morbidity and mortality worldwide. Different risk factors have been demonstrated, but the exact mechanisms behind these diseases are still not fully understood. Recent studies have suggested Chlamydia pneumoniae to be involved in the pathogenesis, and increased apoptotic indexes in atherosclerotic plaques have been documented. In this study, we show that C. pneumoniae induces apoptosis and necrosis in populations of human coronary artery endothelial cells. Apoptosis was determined by TUNEL and flow cytometry after staining of cells with annexin V and propidium iodide, and defined as TUNEL-reactive or annexin V-positive, propidium iodide-negative cells. The apoptosis was induced within 2 h postinfection and increased with inoculation dose. The general caspase inhibitor z-VAD-fmk did not affect apoptotic frequencies. By immunochemistry and immunoblot, we demonstrated activation and subcellular translocation of the proapoptotic protein Bax, and translocation of apoptosis-inducing factor from the cytosol to the nucleus. These results indicate that C. pneumoniae-induced apoptosis in human coronary artery endothelial cells is caspase-independent and regulated by Bax and apoptosis-inducing factor.  相似文献   

20.
Synergism between stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be essential for hematopoietic cell proliferation. Since HML-2 cells proliferate exponentially in the presence of SCF and GM-CSF together, we analyzed the molecular mechanism of the interaction between these two factors in the cells. An immediate-early gene product, c-myc, was additively upregulated in HML-2 cells by addition of a combination of SCF and GM-CSF. c-myc antisense oligonucleotides effectively suppressed cell proliferation and downregulated the induction of D3, E, A, and B cyclins in HML-2 cells stimulated with the two-factor combination. HML-2 cells arrested at the G0/G1 phase with SCF alone and expressed modest amounts of c-myc and cyclin D3, but not cyclin E. With GM-CSF treatment alone, the cells could not progress to the G2/M phase and expressed c-myc, cyclin D3 and cyclin E but not cyclins A or B. The addition of the counterpart cytokine resulted in cell cycle completion by induction of the deficient cyclins. Taken together, it appears that the induction of c-myc is an indispensable event in the proliferation of HML-2 cells and that the cytokines SCF and GM-CSF interact reciprocally for expression of all cyclins required for cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号