共查询到20条相似文献,搜索用时 15 毫秒
1.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance. 相似文献
2.
A membrane fraction enriched in plasma membrane marker enzymes K+-dependent p-nitrophenyl phosphatase, 5'-nucleotidase and alkaline phosphatase was prepared from rat parotid glands using Percoll self-forming gradient. This fraction contained an ATP-dependent CA2+ transport system which was distinct from those located on the endoplasmic reticulum and mitochondria of parotid glands. The Km for ATP was 0.57 +/- 0.07 mM (n = 3). Nucleotides other than ATP such as ADP, AMP, GTP, CTP, UTP or ITP were unable to support significant Ca2+ uptake. ATP-dependent Ca2+ uptake displayed sigmoidal kinetics with respect to free Ca2+ concentration with a Hill coefficient of 2.02. The K0.5 for Ca2+ was 44 +/- 3.1 nM (n = 3) and the average Vmax was 13.5 +/- 1.1 nmol/min per mg of protein. The pH optimum was 7.2. Trifluorperazine inhibited Ca2+ transport with half maximal inhibition observed at 30.8 microM. Complete inhibition was observed at 70 microM trifluorperazine. Exogenous calmodulin however had no effect on the rate of transport. Na+ and K+ ions activated Ca2+ transport at 20 to 30 mM ion concentrations. Higher concentrations of Na+ or K+ were inhibitory. 相似文献
3.
J Helman B L Kuyatt T Takuma B Seligmann B J Baum 《The Journal of biological chemistry》1986,261(19):8919-8923
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump. 相似文献
4.
Evidence that ATP-dependent Ca2+ transport in rat parotid microsomal membranes requires charge compensation.
下载免费PDF全文

ATP-dependent Ca2+ transport was investigated in a rat parotid microsomal-membrane preparation enriched in endoplasmic reticulum. Ca2+ uptake, in KCl medium, was rapid, linear with time up to 20 s, and unaffected by the mitochondrial inhibitors NaN3 and oligomycin. This Ca2+ uptake followed Michaelis-Menten kinetics, and was of high affinity (Km approximately 38 nM) and high capacity (approximately 30 nmol/min per mg of protein). In the presence of oxalate, Ca2+ uptake continued to increase for at least 5 min, reaching an intravesicular accumulation approx. 10 times higher than without oxalate. Ca2+ uptake was dependent on univalent cations in the order K+ = Na+ greater than trimethylammonium+ greater than mannitol and univalent anions in the order Cl- greater than acetate- greater than Br- = gluconate- = NO3- greater than SCN-. Ca2+ uptake was not elevated if membranes were incubated in the presence of a lipophilic anion (NO3-) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Ca2+ transport was altered by changes in the K+-diffusion potential of the membranes. A relatively negative K+-diffusion potential increased the initial rate of Ca2+ accumulation, whereas a relatively positive potential decreased Ca2+ accumulation. In the presence of an outwardly directed K+ gradient, nigericin had no effect on Ca2+ uptake. In aggregate, these studies suggest that the ATP-dependent Ca2+-transport mechanism present in rat parotid microsomal membranes exhibits an electrogenic Ca2+ flux which requires the movement of other ions for charge compensation. 相似文献
5.
T. Lockwich J. Chauthaiwale S. V. Ambudkar I. S. Ambudkar 《The Journal of membrane biology》1995,148(3):277-285
We have previously reported that rat parotid gland basolateral plasma membrane vesicles (BLMV) have a relatively high affinity Ca2+ transport pathway and an unsaturable Ca2+ flux component (Lockwich et al., 1994. J. Membrane Biol. 141:289–296). In this study, we have solubilized BLMV with octylglucoside (1.5%) and have reconstituted the solubilized proteins into proteoliposomes (PrL) composed of E. coli bulk phospholipids, by using a detergent dilution method. PrL exhibited 3–5-fold higher 45Ca2+ influx than control liposomes (without protein). Ca2+ uptake into PrL was dependent on the [protein] in PrL and steady state [Ca2+] in PrL was in equilibrium with external [Ca2+]. These data demonstrate that a passive, protein-mediated Ca2+ transport has been reconstituted from BLMV into PrL. 45Ca2+ influx into liposomes did not saturate with increasing [Ca2+] in the assay medium. In contrast, PrL displayed saturable 45Ca2+ influx and exhibited a single Ca2+ flux component with an apparent K
ca=242 ± 50.9 m and V
max=13.5 ± 1.14 nmoles Ca2+/mg protein/ minute. The K
ca of Ca2+-transport in PrL was similar to that of the high affinity Ca2+ influx component in BLMV while the V
max was about 4-fold higher. The unsaturable Ca2+ flux component was not detected in PrL. 45Ca2+ influx in PrL was inhibited by divalent cations in the order of efficacy, Zn2+>Mn2+>Co2+=Ni2+, and appeared to be more sensitive to lower concentrations of Zn2+ than in BLMV. Consistent with our observations with BLMV, the carboxyl group reagent N,N-dicyclohexylcarbodiimide (DCCD) inhibited the reconstituted Ca2+ transport in PrL. Importantly, in both BLMV and PrL, DCCD induced a 40–50% decrease in V
max of Ca2+ transport without an alteration in K
ca. These data strongly suggest that the high affinity, passive Ca2+ transport pathway present in BLMV has been functionally reconstituted into PrL. We suggest that this approach provides a useful experimental system towards isolation of the protein(s) involved in mediating Ca2+ influx in the rat parotid gland basolateral plasma membrane.We thank Dr. Bruce Baum for his constant support and encouragement. We also thank Ms. Grace Park and all our colleagues for their assistance during the course of this work. 相似文献
6.
M D Kurski? S A Kosterin N F Bratkova V P Zimina V P Fomin 《Biokhimii?a (Moscow, Russia)》1981,46(8):1435-1444
The specific activities of Mg2+, Ca2+-ATPase in the plasma membrane fraction of rabbit and cattle myometrium are 8.30 +/- 0.80 and 2.36 +/- 0.48 mkmoles of Pi per mg of protein, respectively. This fraction possesses a higher (in comparison with other subcellular fractions) capacity for ATP-dependent uptake of 45Ca2+ (9.37 +/- 1.66 and 6.86 +/- 0.96 nmoles of 45Ca2+ per mg of protein in 15 min for rabbit and cattle myometrium, respectively); the ratio of ATP-dependent uptake of Ca2+ to adsorbed Ca2+ is also high. Phosphate increases Ca2+ uptake in the presence of ATP and Mg2+. The ionophore A-23187 added to the incubation mixture without ATP and Mg2+ sharply increases Ca2+ binding. An addition of the ionophore at the 15th min of the ATP-dependent Ca2+ uptake causes a complete and rapid release of the accumulated Ca2+. The release of Ca2+ can be also caused by an addition of Na-DS or EGTA to the incubation mixture. This suggests that Ca2+ is accumulated through the plasma membrane inside the closed structures. It was assumed that myometrial sarcolemma plays an essential role in regulation of intracellular Ca2+ concentration in the uterus at rest and that the active Ca2+ efflux from the cells is controlled by the Mg2+, Ca2+-ATPase system. 相似文献
7.
An ATP-dependent transport system which is active at concentrations of free Ca2+ in the submicromolar range has been identified in adipocyte plasma membranes. The system appears to represent the functional component of the high affinity insulin-sensitive calcium-stimulated, magnesium-dependent adenosine triphosphatase preveiously described in the same preparation (Pershadsingh, H. A., and McDonald, J. M. (1979) Nature 281, 495-497). This ATP-dependent Ca2+ transport pump was stimulated approximately 3-fold by the Ca2+-dependent regulatory protein, calmodulin. This effect was confined to the plasma membrane since a similar effect was undetectable in the fraction enriched in endoplasmic reticulum. Calmodulin stimulation was dose-dependent but saturable with half-maximal activation occurring at 0.72 microgram/ml (43 nM). Calmodulin appeared to stimulate the system primarily by decreasing the apparent half-maximal saturation constant for free Ca2+ from 0.20 +/- 0.04 microM to 0.07 +/- 0.01 microM (n = 3). The Hill coefficient increased from 1.6 +/- 0.2 to 3.2 +/- 0.6 (n = 3), thus showing an increased positive cooperativity which allows the pump to be activated by an exceedingly narrow Ca2+ threshold in the presence of calmodulin. The calmodulin stimulation of the plasma membrane Ca2+ extrusion pump in adipocytes, working in opposition to metabolic signals which increase cytoplasmic Ca2+, could constitute a self-regulating negative feedback device for maintaining a low steady state level of intracellular Ca2+. This feedback system may be of critical importance in regulation of cellular metabolism by insulin. 相似文献
8.
9.
Basolateral membrane vesicles were prepared from purified proximal and distal tubules of the rabbit kidney. The properties of the ATP-dependent Ca2+ transport were investigated. In both membranes, there was a high affinity, ATP-dependent Ca2+ transport system (Km = 0.1 microM). The optimal concentration of Mg2+ was 0.5 mM and the optimal concentration of ATP was 1 mM. The nucleotide specificity and pH dependence of the Ca2+ transport in both membranes were similar. In basolateral membrane vesicles, calmodulin had no effect on Ca2+ transport. However, in basolateral membrane vesicles depleted of calmodulin, exogenous calmodulin increased the Ca2+ transport by increasing maximal velocity. There were no major differences in the properties of the ATP-dependent Ca2+ transport system in these two membranes. These findings are discussed in relation to why parathyroid hormone differentially modulates Ca2+ transport in these two segments of the nephron. 相似文献
10.
ATP-dependent Ca2+ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane 总被引:2,自引:0,他引:2
Three plasma membrane subfractions have been isolated and characterized from rat liver cells. The high affinity Ca2+-stimulated ATPase is highly enriched in the bile canalicular subfraction. Taking into account cross-contamination by the blood sinusoidal and lateral membranes it is suggested that the high-affinity Ca2+-ATPase is located exclusively in this fraction. The high-affinity Ca2+-ATPase is coupled to Ca2+ transport, is calmodulin-insensitive, sensitive to vanadate under appropriate experimental conditions and is strongly inhibited by La3+. In the presence of Ca2+ and ATP the ATPase forms a phosphorylated intermediate of molecular mass about 200 kDa. 相似文献
11.
Calmodulin activates the ATP-dependent transport of Ca2+. The V0 value for this reaction in the absence of calmodulin is 0.82, that in the presence of 10(-7) M calmodulin is 5 times as high, i. e. 4.5 nmol 45Ca2+/mg protein/min. The Vmax value in the absence of calmodulin is 2.07, that with the activator is 4.33 nmol 45Ca2+/mg protein/min. The corresponding Km values are 0.75 X 10(-6) M and 0.66 X 10(-7) M, respectively, i. e., the affinity of the Ca-pump for Ca2+ increases. The half-maximum Ca-binding activity of calmodulin measured with a help of the fluorescent probe, N-phenyl-1-naphthylamine (PNA), is observed at 5 X 10(-7) M Ca2+. Mg2+ (3 mM) decreases 10-fold the Ca-binding affinity. No significant effect of ATP on the Ca-binding properties of calmodulin was found; the Hill coefficient is suggestive of a positive cooperativity of this reaction. A comparison of dependences of the calmodulin-stimulated component of ATP-dependent transport of Ca2+ in myometrium plasma membranes and of the Ca-binding activity of calmodulin measured with a help of PNA suggests that the effect of calmodulin on the affinity of the Ca-pump for Ca2+ can also be realized when some (but not all) Ca-binding sites in the calmodulin molecule are saturated with Ca2+. 相似文献
12.
Thioridazine inhibits the activity of the synaptic plasma membrane Ca(2+)-ATPase from pig brain and slightly decreases the rate of Ca(2+) accumulation by synaptic plasma membrane vesicles in the absence of phosphate. However, in the presence of phosphate, thioridazine increases the rate of Ca(2+) accumulation into synaptic plasma membrane vesicles. Phosphate anions diffuse through the membrane and form calcium phosphate crystals, reducing the free Ca(2+) concentration inside the vesicles and the rate of Ca(2+) leak. The higher levels of Ca(2+) accumulation obtained in the presence of thioridazine could be explained by a reduction of the rate of slippage on the plasma membrane ATPase. 相似文献
13.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems. 相似文献
14.
Cross-talk between cAMP and [Ca(2+)](i) signaling pathways represents a general feature that defines the specificity of stimulus-response coupling in a variety of cell types including parotid acinar cells. We have reported recently that cAMP potentiates Ca(2+) release from intracellular stores, primarily because of a protein kinase A-mediated phosphorylation of type II inositol 1,4,5-trisphosphate receptors (Bruce, J. I. E., Shuttleworth, T. J. S., Giovannucci, D. R., and Yule, D. I. (2002) J. Biol. Chem. 277, 1340-1348). The aim of the present study was to evaluate the functional and molecular mechanism whereby cAMP regulates Ca(2+) clearance pathways in parotid acinar cells. Following an agonist-induced increase in [Ca(2+)](i) the rate of Ca(2+) clearance, after the removal of the stimulus, was potentiated substantially ( approximately 2-fold) by treatment with forskolin. This effect was prevented completely by inhibition of the plasma membrane Ca(2+)-ATPase (PMCA) with La(3+). PMCA activity, when isolated pharmacologically, was also potentiated ( approximately 2-fold) by forskolin. Ca(2+) uptake into the endoplasmic reticulum of streptolysin-O-permeabilized cells by sarco/endoplasmic reticulum Ca(2+)-ATPase was largely unaffected by treatment with dibutyryl cAMP. Finally, in situ phosphorylation assays demonstrated that PMCA was phosphorylated by treatment with forskolin but only in the presence of carbamylcholine (carbachol). This effect of forskolin was Ca(2+)-dependent, and protein kinase C-independent, as potentiation of PMCA activity and phosphorylation of PMCA by forskolin also occurred when [Ca(2+)](i) was elevated by the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid and was attenuated by pre-incubation with the Ca(2+) chelator, 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA). The present study demonstrates that elevated cAMP enhances the rate of Ca(2+) clearance because of a complex modulation of PMCA activity that involves a Ca(2+)-dependent step. Tight regulation of both Ca(2+) release and Ca(2+) efflux may represent a general feature of the mechanism whereby cAMP improves the fidelity and specificity of Ca(2+) signaling. 相似文献
15.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane. 相似文献
16.
Bonaventura Ruiz-Montasell F. Javier Casado Antonio Felipe Marçal Pastor-Anglada 《The Journal of membrane biology》1992,128(3):227-233
Summary The characteristics of uridine transport were studied in basolateral plasma membrane vesicles isolated from rat liver. Uridine was not metabolized under transport measurement conditions and was taken up into an osmotically active space with no significant binding of uridine to the membrane vesicles. Uridine uptake was sodium dependent, showing no significant stimulation by other monovalent cations. Kinetic analysis of the sodium-dependent component showed a single system with Michaelis-Menten kinetics. Parameter values were K
M 8.9
m and V
max 0.57 pmol/mg prot/sec. Uridine transport proved to be electrogenic, since, firstly, the Hill plot of the kinetic data suggested a 1 uridine: 1 Na+ stoichiometry, secondly, valinomycin enhanced basal uridine uptake rates and, thirdly, the permeant nature of the Na+ counterions determined uridine transport rates (SCN– > NO
3
–
> Cl– > SO
4
2–
). Other purines and pyrimidines cis-inhibited and trans-stimulated uridine uptake.This work has been partially supported by grant PM90-0162 from D.G.I.C.Y.T. (Ministerio de Educación y Ciencia, Spain). B.R.-M. is a research fellow supported by the Nestlé Nutrition Research Grant Programme. 相似文献
17.
Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex 总被引:1,自引:0,他引:1
M. P. E. van Heeswijk J. A. M. Geertsen C. H. van Os 《The Journal of membrane biology》1984,79(1):19-31
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K
m
=0.11 m Ca2+ andV
max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells. 相似文献
18.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K
1
=1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK
M
=8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion. 相似文献
19.
Glutamine transport by rat basolateral membrane vesicles 总被引:1,自引:0,他引:1
F K Ghishan W Sutter H Said D Leonard J Pietsch N Abumrad 《Biochimica et biophysica acta》1989,979(1):77-81
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral. 相似文献
20.
The migration of intestinal epithelial cells from the crypts to the tips of villi is associated with progressive cell differentiation. The changes in Ca2+-ATPase activity and ATP-dependent Ca2+-transport rates in basolateral membranes from rat duodenum were measured during migration along the crypt-villus axis. In addition, vitamin D-dependent calcium-binding protein and calmodulin content were measured in homogenates of six cell populations which were sequentially derived from villus tip to crypt base. Alkaline phosphatase activity was highest at the tip of the villus (fraction I) and decreased more than 20-fold towards the crypt base (fraction VI). (Na+ + K+)-ATPase activity also decreased along the villus-crypt axis but in a less pronounced manner than alkaline phosphatase. ATP-dependent Ca2+-transport in basolateral membranes was highest in fraction II (8.2 +/- 0.3 nmol Ca2+/min per mg protein) and decreased slightly towards the villus tip and base (fraction V). The youngest cells in the crypt had the lowest Ca2+-transport activity (0.9 +/- 0.1 nmol Ca2+/min per mg protein). The distribution of high-affinity Ca2+-ATPase activity in basolateral membranes correlated with the distribution of ATP-dependent Ca2+-transport. The activity of Na+/Ca2+ exchange was equal in villus and crypt basolateral membranes. Compared to the ATP-dependent Ca2+-transport system, the Na+/Ca2+ exchanger is of minor importance in villus cells but may play a more significant role in crypt cells. Calcium-binding protein decreased from mid-villus towards the villus base and was undetectable in crypt cells. Calmodulin levels were equal along the villus-crypt axis. It is concluded that vitamin D-dependent calcium absorption takes primarily place in villus cells of rat duodenum. 相似文献