首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Size variation is a ubiquitous feature of animal populations and is predicted to strongly influence species abundance and dynamics; however, the factors that determine size variation are not well understood. 2. In a mesocosm experiment, we found that the relationship between mean and variation in wood frog (Rana sylvatica) tadpole size is qualitatively different at different levels of competition created by manipulating resource supply rates or tadpole density. At low competition, relative size variation (as measured by the coefficient of variation) decreased as a function of mean size, while at high competition, relative size variation increased. Therefore, increased competition magnified differences in individual performance as measured by growth rate. 3. A model was developed to estimate the contribution of size-dependent factors (i.e. based on size alone) and size-independent factors (i.e. resulting from persistent inherent phenotypic differences other than size that affect growth) on the empirical patterns. 4. Model analysis of the low competition treatment indicated that size-dependent factors alone can describe the relationship between mean size and size variation. To fit the data, the size scaling exponent that describes the dependence of growth rate on size was determined. The estimated value, 0-83, is in the range of that derived from physiological studies. 5. At high competition, the model analysis indicated that individual differences in foraging ability, either size-based or due to inherent phenotypic differences (size-independent factors), were much more pronounced than at low competition. The model was used to quantify the changes in size-dependent or size-independent factors that underlie the effect of competition on size-variation. In contrast to results at low competition, parameters derived from physiological studies could not be used to describe the observed relationships. 6. Our experimental and model results elucidate the role of size-dependent and size-independent factors in the development of size variation, and highlight and quantify the context dependence of individual (intrapopulation) differences in competitive abilities.  相似文献   

2.
The population structure of the Japanese fluvial sculpin,Cottus pollux (large egg type), in the upper reaches of the Inabe River, Mie Prefecture, central Japan, was investigated by a mark-and-recapture method from July 1989 to January 1991. Breeding of the species occurred from mid February to early May, peaking from mid February to late March. The mean size of mature males observed in March 1990 was significantly larger than that of females, showing apparent sexual size dimorphism. Data analysis of the growth of 1658 marked individuals revealed that the species matured at 2 years of age in both sexes. Whereas 1 year old males reached ca. 50–70 mm SL, females were less than 50 mm SL at the same age, size dimorphism already being apparent. Immature males exhibited higher growth rates than females during their first and second years, some of the former outstripping mature males of the preceding year class in total length. After attaining sexual maturity, both males and females grew mainly from July to December, with no significant differences in mean growth rate between them. Sexual size dimorphism of the species seems to be attributable to different growth rates between the sexes during their immature stage.  相似文献   

3.
We quantified: (1) growth rate, (2) length-mass relationships, (3) size- and age-specific fecundity, (4) egg size-frequencies, and (5) size- and age-specific egg diameter relationships for reproductively active female C. bairdi from one of the southern-most extant populations of this species (Coweeta Creek drainage, North Carolina). Gravid females were collected during February and March in 1993–1995, and 1998. Cottus bairdi reached an age of 7+ and 79mm standard length. The youngest and smallest gravid female collected was a 41mm 1+ individual. Mature 1+ females were not uncommon and we collected 21 during our study. All females older than age 2 were mature. Mean fecundity for C. bairdi at Coweeta was 71 eggs (range 9–166 eggs). We found significant positive relationships between fecundity and female length, weight and age. Female length and weight also significantly affected mean egg diameter, although the relationship was not linear. Neither female size or age significantly affected mean maximum egg diameters. Female C. bairdi from the Coweeta Creek drainage possess a unique suite of reproductive characteristics that may represent adaptations to the local selective regime or ecophenotypic variation.  相似文献   

4.
Groups of recently emerged coho salmon fry Oncorhynchus kisutch were reared for 3 months on food that appeared either asynchronously at a single location (localized) or synchronously and spatially dispersed (dispersed). Groups were further subdivided into those receiving low (1%) or high (3% body weight per day) rations, with five replicate groups for each treatment combination. At low ration there was greater growth depensation, i.e. growth variation, in groups receiving localized as compared to dispersed food. At high ration there was no difference. There was no effect of food distribution upon mean fish weight, but groups receiving high rations had greater mean fish weights than groups receiving low rations. There was no overall difference in the frequency of chasing between any of the treatment combinations. However, in localized food groups, dominants defended positions close to where food entered the tank, giving them greater access than subordinates. In dispersed food groups, while dominants also defended particular areas, this did not result in greater access to food. These results demonstrate that although feeding methodology may not directly influence the frequency of aggressive interactions, feeding methods which facilitate food monopolization by dominants can accelerate the growth of these individuals at the expense of subordinates. In aquacultural applications where greater size is desirable, or otherwise selected for, this may result in the unintentional selection for increased aggressiveness.  相似文献   

5.
Synopsis Body size at maturity, individual growth, upstream migration and spatial stability in males of the amphidromous sculpin,Cottus hangiongensis (Cottidae), were investigated in the Daitobetsu River of southern Hokkaido, Japan. The body size of males at first maturity varied gradually along the course of the river, from approximately 70 mm SL in the lowest reaches (0.2 km up from the river mouth) to about 120 mm SL in the uppermost reaches (about 6 km up from the river mouth). The age at first maturity was estimated as 2 to 3 years in the lower reaches and as 4 to 5 years in the upper reaches. Individual growth rate tended to increase upstream, while population density decreased. These results suggest that the male life-history pathway varies along the course of the river and so allows one to consider the relationships to the polygynous mating system of this species in terms of current hypotheses regarding alternative reproductive tactics.  相似文献   

6.
We examined the spatial and temporal variability of juvenile Pacific herring, Clupea pallasi, growth within Prince William Sound, Alaska. Pacific herring, ranging from post-larval to mature fish, were collected from four spatially segregated bays between October 1995 and March 1998. Linear growth equations from each bay were similar. However, growth rates and wet weight-at-length, reflecting condition, of juvenile Pacific herring cohorts varied seasonally and annually. The short term spatial variability in juvenile Pacific herring growth suggested that each bay was a unique nursery area. The physical and biological conditions within each bay appeared to dictate Pacific herring growth rate.  相似文献   

7.
Synopsis We documented species' distributions, size structure of populations, abundance in mainstem and tributary streams, habitat use, and diets of prickly sculpin, Cottus asper, and coastrange sculpin, C. aleuticus, in the Eel River drainage of California, to determine the processes allowing coexistence of these very similar fishes. We observed prickly sculpins at 43 sites and coastrange sculpins at 34. The species co-occurred at 26 sites. Young-of-year coastrange sculpins were only observed within 42 km of the ocean, but young-of-year prickly sculpins were present throughout the species range. Mean, maximum, and minimum lengths of coastrange sculpins were positively correlated with distance from the ocean but no significant relationships were found for prickly sculpins. Absolute abundance of both species was highest in mainstem habitat (prickly sculpins = 0.6 sculpins m–2 and coastrange sculpins = 0.4 sculpins m–2) . Tributary densities of both species tended to be less than 0.1 sculpins m–2. The species inhabited very similar habitats and had very similar diets. Coastrange sculpin populations in upstream areas were maintained by immigration from downstream areas in contrast with prickly sculpin populations that produced young-of-year fish throughout their range. Densities were probably not high enough for interspecific interactions to be important. The factors limiting the upstream distribution of the species may include high water temperatures, stability of the stream bed, and behavior of the fish. In the past, the range of sculpins within the Eel River drainage probably fluctuated with changing physical conditions. Recent introductions of exotic species that compete with and prey upon sculpins, and ongoing human activities in the drainage could result in major reductions in the distribution and abundance of one or both species.  相似文献   

8.
9.
Synopsis The biology of the prickly sculpin was investigated in Clear Lake, Lake County, California in order to determine how it has persisted in the face of introductions of numerous exotic species when most other native species have declined in abundance or have become extinct. Sculpins over 15 mm SL inhabited all types of benthic habitats in the lake, while post larval sculpins were pelagic when the postlarvae of exotic species were absent. The feeding ecology of sculpins was distinct from the other fishes in the lake in that they fed largely on amphipods and chironomid midge larvae regardless of the time of year, time of day, or habitat. Sculpins were uncommon in the stomachs of piscivorous fishes, except juvenile largemouth bass (Micropterus salmoides). It is concluded that prickly sculpins have persisted in Clear Lake in part because they are ecologically distinct from the exotic species and are not preyed upon by them to any great extent, and in part because they have managed to survive other man-related perturbations of this ecosystem.  相似文献   

10.
Data on the juvenile recruitment, growth and size at maturation of Lipophrys pholis in Portuguese waters are compared with the information available on the biology of this species at higher latitudes. In Portugal, recruitment extends for a much longer period, young fish grow faster and sexual maturation is earlier than at higher latitudes. There is a delay of 2–3 months between the appearance of the first eggs on the shore and the recruitment of the first juveniles to the pools.  相似文献   

11.
Life-history variations in male and female fluvial sculpins, Cottus nozawae, were studied in a small mountain stream in Hokkaido, Japan, primarily by using capture-mark-recapture methods. At three study areas established along the stream course, the majority of marked sculpins were recaptured in their original location over one or more years, indicating their long-term occupation of each restricted habitat area. Sculpin densities increased toward the upstream habitats, whereas individual growth rates were more rapid downstream. In both sexes, sculpins distributed downstream matured at a larger body size and later in life than upstream sculpins, clearly demonstrating a clinal variation in these respects. A comparison of life-history variations in C. nozawae with those in amphidromous C. hangiongensis suggests that intrapopulational life-history variations in the former might be environmentally induced, and that one of the most important determinants for the variations in Cottus species might be population density.  相似文献   

12.
1. A growth model, originally developed for brown trout (Salmo trutta), has now been fitted to data for Atlantic salmon (S. salar) and stone‐loach (Barbatula barbatula) from English populations, and Arctic charr (Salvelinus alpinus) from Sweden. The model relates growth rate to temperature for a fish of standard size and the functional relationship has a triangular shape with a sharp peak at the optimal temperature for growth and zero growth at the base of the triangle. It was unsuitable for growth data for Norwegian salmon, and a curvilinear Ratkowsky model provided a better fit, though the experimental protocol was different in the Norwegian and English experiments. 2. The Norwegian salmon were kept in groups in each tank, had to compete for food, and had to be divided into slow, moderate and fast growers before the Ratkowsky model could be fitted. Each English salmon was kept in its own tank and fed individually. For replicate experiments, fish of similar size were selected. Variation among fish kept under similar conditions was therefore small, and the triangular model was essentially for individual fish, not groups of fish. 3. The present simulation study tests the hypothesis that individual differences in the growth response could account for the curvilinear growth‐temperature relationship for the Norwegian salmon. The triangular model was used to generate the growth response to temperature for a group of salmon, each fish having a slightly different temperature preference and growth rate. The result was a curvilinear response, well approximated by the Ratkowsky model (adjusted R2 = 0.96). When the variability in individual temperature preference was increased, the Ratkowsky model was an even better fit (adjusted R2 = 0.98). Therefore, the apparent discrepancy between the two models was reconciled by allowing for individual differences in temperature preference and growth rate within groups of fish.  相似文献   

13.
14.
Few studies have validated the use of artificial seagrass to study processes structuring faunal assemblages by comparison with natural seagrass. One metric (fish recruitment) for evaluating the use of artificial seagrass was used in the present study. Settlement and recruitment of juvenile fish was estimated in natural, Zostera capricorni Aschers, and artificial seagrass in Botany Bay, NSW, over 6 consecutive days. Tarwhine, Rhabdosargus sarba, dominated the catch from both habitats, and there was no significant difference in abundance of recruits among the habitats. This was at least partly caused by large spatial and temporal variation in abundance. Daily abundances of R. sarba recruits suggested movement between seagrass beds, but could not be confirmed without tagging individual fish. Rhabdosargus sarba settlers were less abundant than recruits, but were also patchily distributed amongst natural and artificial seagrass beds. Most other species were also found in similar abundance in the two habitats, except stripey, Microcanthus strigatus, which was more abundant in artificial seagrass. Overall, fish assemblages in natural and artificial seagrass were similar. Artificial seagrass may therefore be useful for monitoring settlement and recruitment of juvenile fishes to disturbed habitats, to predict the success of habitat remediation. However, if artificial seagrass is used to model processes occurring in natural seagrass, it is necessary to consider species-specific responses to the artificial habitat.  相似文献   

15.
Hulme  Philip E.  Borelli  Teresa 《Plant Ecology》1999,145(1):149-156
The considerable variability found in post-dispersal seed predation and the absence of consistent directional trends (e.g., with reference to seed size) has made it difficult to predict accurately the impact of seed predators on plant communities. We examined the variation attributable to location, seed density and seed burial on the removal of seeds of three tree species: Fraxinus excelsior, Taxus baccata and Ulmus glabra. Experiments were undertaken in five deciduous woodlands in Durham, U.K., and the relative importance of vertebrate and invertebrate seed predators was assessed using selective exclosures. In all five woodlands, seed removal was greatest from treatments to which vertebrates had access, and losses attributable to invertebrates were negligible. Rodents, in particular Apodemus sylvaticus (Muridae) and Clethrionomys glareolus (Cricetidae), were the principal seed consumers in these woodlands. Unidentified vertebrate seed predators (probably birds, rabbits and/or squirrels) appeared to be significant seed removers in three of the five woodlands. Rates of removal differed among the three tree species, increasing in the following order Fraxinus < Taxus < Ulmus but were not related to seed mass. The major effect influencing rates of seed removal was seed burial, which halved rates of seed removal overall. The effect of seed burial was a function of seed size. The larger seeds of Taxus realising little benefit from seed burial whereas encounter of the smaller Ulmus seeds fell by almost two-thirds. Removal was density-dependent for all three species. However, the relative increase in seed encounter through an increase in seed density was a negative function of seed size. This suggests that, for large seeds, the opportunity to escape seed predation via burial or reduced seed density is limited. These results reveal a number of parallels with other studies of post-dispersal predation and identify several generalities regarding the interaction between plants and post-dispersal seed predators. Comparison of the seed predation results with actual seedling distributions suggests that seed predators may influence regeneration of Ulmus glabra but probably play a lesser role in the dynamics of Taxus baccata and Fraxinus excelsior.  相似文献   

16.
17.
Groups of juvenile chum salmon were reared on food that was either dispersed throughout, or localized in one area of, the rearing tank. Groups receiving localized food displayed more aggression than those receiving dispersed food. This led to differences in growth, with fish reared on localized food having greater individual growth variability, i.e. growth depensation. However, after several months of rearing in these different feeding/social environments, fish reared on dispersed food were just as aggressive when first exposed to localized food as were fish reared on localized food. Furthermore, in competitive contests between fish of the two rearing histories, those reared on dispersed food were just as likely to become dominant as those reared on localized food. These results suggest that the behavioural development of aggressiveness is not amenable to alteration by manipulation of food distribution.  相似文献   

18.
Spatial autocorrelation analysis tests whether the observed value of a variable at one locality is significantly dependent on values of the variable at neighbouring localities. The method was extended by us in an earlier paper to include the computation of correlograms for spatial autocorrelation. These show the autocorrelation coefficient as a function of distance between pairs of localities, and summarize the patterns of geographic variation exhibited by the response surface of any given variable. Identical variation patterns lead to identical correlograms, but different patterns may or may not yield different correlograms. Similarity in the correlograms of different variation patterns suggests similarity in the generating mechanism of the pattern.
The inferences that can be drawn from correlograms are discussed and illustrated. Examination and analysis of variation patterns of several characters or gene frequencies for one population, or of several populations in different places or at different times, permit some conclusions about the nature of the populational processes generating the observed patterns.
Autocorrelation analysis is applied to four biological situations differing in the nature of the data (interval or nominal), in the type of grid connecting the localities (regular or irregular), and the field of application (evolution or ecology). The examples comprise genotypes of individual mice, blood group frequencies in humans, gene frequency variation in a perennial herb, and the distribution of species of trees. The implications of our findings are discussed.  相似文献   

19.
Synopsis Growth patterns of the 1982 year-class, individual growth patterns, age at sexual maturity and longevity in the river-sculpin, Cottus hangiongensis (Cottidae), were investigated along the course of the Daitobetsu River of southern Hokkaido, Japan. Slow growth occurred in males from the lower reaches, while more rapid growth was found in males from upstream areas. Age at first sexual maturity in males generally increased from 2 or 3 years in downstream areas to 4–6 years in upstream sites. Longevity was estimated as 7 years throughout the river course except in the uppermost site where it was 6 years. The growth differences evident in male C. hangiongensis are likely a result of differences in sculpin population density and/or food abundance along the river course, and are apparently reflected in variation in their life-history as well.  相似文献   

20.
Sillago robusta and S. bassensis occupy the open sandy areas of the deeper waters (20–35 m) of the inner continental shelf of the lower west coast of Australia. Comparisons were made of their age and size compositions, growth rates, ages and sizes at first maturity, and spawning times. Most S. robusta were less than 3 years old (maximum 7 years), while S. bassensis often reached 7 years of age (maximum 10 years). The maximum length of S. robusta (200 mm) was far shorter than S. bassensis (328 mm), whereas the reverse pertained for the von Bertalanffy growth coeffcient (K), i.e. c. 1.0 v. c. 0.3. Differences in K reflect the fact that c. 80% of the asymptotic length is achieved by S. robusta after 2 years, but not until 6 years of age by S. bassensis. Sexual maturity was reached by up to 50% of S. robusta at the end of their first year of life, and by almost all fish at the end of their second year of life. Most S. bassensis did not reach maturity until the end of their third year of life. In both species, those individuals that reached maturity early, were significantly longer than those that did not reach maturity at the same age. The gonadosomatic indices and proportions of mature gonads, and the numbers of vitellogenic and hydrated oocytes and post-ovulatory follicles, were relatively high in ovaries of both species between December and March. Although both species spawn in these 4 months, some S. bassensis also spawn between September and November and in March and April. In the middle of the spawning period, the ovaries of S. robusta and S. bassensis frequently contained oocytes that ranged widely in size and development, together with post-ovulatory follicles, suggesting that both species are multiple spawners. Juveniles of S. robusta remain in the deeper waters of the inner continental shelf, whereas those of S. bassensis migrate inshore to their nursery areas in surf zones. As S. robusta reaches sexual maturity at an earlier age and smaller size than S. bassensis, it is probably more advantageous for the juveniles of this species to remain in deeper water, and thereby conserve energy for gonadal maturation, rather than migrating into shallow waters for only a very few months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号