首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Quantitative ultrastructural morphometric studies were made on the prolactin cells of Poecilia latipinna adapted to freshwater (FW), one-third seawater (1/3 SW) and full-strength seawater (SW), and at various times after transfers between 1/3 SW and FW.In fully-adapted fish the rates of prolactin (PRL) synthesis and PRL release are inversely related to environmental salinity. During adaptation to a new salinity the two rates are temporarily uncoordinated, with release increasing or decreasing more readily than synthesis. Synthesis appears to take 30 h or longer to come into balance with the increased release rate following transfer from 1/3 SW to FW, and 72 h or longer to adjust to the reduction in release rate that follows the reverse transfer. The excess PRL granules that accumulate in the latter situation appear to be removed by lysosomal digestion. As in other teleosts, in fish adapted to the external medium the size of the stored PRL granules is inversely related to external salinity, but this relationship breaks down during adaptation to a new salinity.The stellate cells which penetrate between the PRL cells are more prominent, more extensively ramified, and appear more metabolically active in FW-adapted fish than in the other groups. These cells seem to be closely related in function to the secretory activity of the PRL cells.We thank Mr. W.A. Thomson and Mr. D.I. Hollingworth for technical assistance and Dr. D.I.C. Pearson (Department of Physics, University of Nancy, Nancy, France) for advice on mathematical analysis and computer programs. The work was carried out during tenure of an S.R.C. Studentship by T.F.C. Batten  相似文献   

2.
Summary The structure of the neurohypophysis of Poecilia latipinna (green molly, sailfin molly) was studied with the electron microscope. Profile diameters of neurosecretory granules in the non-myelinated neurohypophysial nerve fibres were measured and mathematically corrected for error due to section thickness. Six different types of nerve fibres could be distinguished by statistical classification of their granules and by other ultrastructural features. One fibre-type (type B) contained granules with a mean diameter of 85 nm, and the other five types (types Ala, Alb, A2, A3 and A4) all contained granules with mean diameters greater than 100 nm. Synaptic contacts were observed between type B fibres and all the adenohypophysial cell-types, although in the case of the ACTH cells the synapses were separated from the cell membrane by a continuous double basement membrane. Type A fibres were observed to contact the cells of the proximal pars distalis and pars intermedia, but did not form synapses. However, synapses occurred between type A fibres and pituicytes, and between type A fibres and the pericapillary basement membrane in the interior of the neurohypophysis. The possible roles of the different types of nerve fibres in controlling the adenohypophysial cells are discussed in the context of evidence from other teleosts.We thank Mr. W.A. Thomson and Mr. D.I. Hollingworth for technical assistance, and Dr. D.I.C. Pearson (Department of Physics, University of Nancy, Nancy, France) for advice on mathematical analysis and computer programs. The work was carried out during the tenure of an S.R.C. Research Studentship by T.F.C.B.  相似文献   

3.
Summary In the sailfin molly, Poecilia latipinna, seven morphological endocrine celltypes could be distinguished with the electron microscope. Each of these was identified with one of the seven cell-types distinguished with the light microscope, to most of which endocrine functions have previously been allocated. Corticotrophs and prolactin cells form the rostral pars distalis, and the proximal pars distalis consists of an outer layer of gonadotrophs and an inner zone containing growth hormone cells and thyrotrophs. The pars intermedia contains two cell-types, of uncertain function. Stellate cells (interstitial cells) occur throughout the adenohypophysis, but are most numerous and prominent in the rostral pars distalis. The inner proximal pars distalis contains a cell-type not previously distinguished in this species with the light microscope, the Z-cell, which could be aminergic.The ultrastructural features of each cell-type are described in detail, and discussed in comparisons with the homologous cells described in other teleosts. There is good agreement for different teleosts in the ultrastructural details of each cell type.We thank Mr. L. Ethridge, Mr. M. P. Hancock, Mr. D. Hollingworth and Mr. W. Thomson for technical assistance, and Mr. D. Taylor of the Nuffield Institute of the Zoological Society of London for permission to use the Nuffield Institute electron microscope. We are grateful to Dr. Harry Grier, who collected and embedded glands from P. latipinna in its natural fresh-water habitat in Florida, U.S.A. T. Batten is in receipt of an S.R.C. Research Studentship.  相似文献   

4.
Summary Quantitative morphometric studies with the electron microscope were made on the prolactin cells of wild freshwater sailfin mollies taken in Florida in August at four different times of day. The results indicate a circadian rhythm in the prolactin cell, the period of highest synthetic activity being from midday to evening, as indicated by the condition of nucleus, Golgi apparatus and rough endoplasmic reticulum, and by the incidence of granule release profiles. No circadian changes were detected in the ACTH cells.Several distinct sites of prolactin granule release were recognised. However, there was no conclusive evidence of granule release by any mechanism other than classical exocytosis.We thank Mr. W. Thomson for technical assistance and Ann Grier for help in collecting the fish. T.F.C. Batten is in receipt of an S.R.C. Research Studentship.  相似文献   

5.
Summary The lower spinal cord including the caudal neurosecretory system of the pike (Esox lucius) was investigated by means of light and electron microscopy and also with the fluorescence histochemical method of Falck and Hillarp for the visualization of monoamines. A system of perikarya displaying a specific green fluorescence of remarkably high intensity is disclosed in the basal part of the ventrolateral and lateral ependymal lining of the central canal. The area corresponding to the upper half of the urophysis has most cells; their number decreases caudally and cranially. A considerable number of their beaded neurites reach the neurosecretory neurons by different routes but are only occasionally present in the actual neurohemal region. An intensely fluorescent dendritic process is sometimes observed terminating with a bulbous enlargement at the ependymal surface in the central canal. Besides small, electron lucid vesicles in the terminal parts of the axons, the neurons contain numerous large dense-core vesicles which can apparently take up and store 5-hydroxydopa (5-OH-dopa) and 5-hydroxydopamine (5-OH-DA). These neurons are thought to be adrenergic and to contain a primary catecholamine, possibly noradrenaline.The varicosities of the adrenergic terminals are repeatedly observed contiguous to some of the neurosecretory axons, the membrane distance at places of contacts generally ranging from 150–200 Å. Another type of nerve terminals that contain only small empty vesicles, also after pretreatment with 5-OH-dopa or 5-OH-DA, are frequent among the neurosecretory neurons. These axons establish synaptic contacts with membrane thickenings on most of the neurosecretory neurons. Thus it seems that the neurosecretory neurons are innervated by neurons morphologically similar to cholinergic neurons and that part of them receive an adrenergic innervation, which supports the view hat the caudal neurosecretory cells do not constitute a functionally homogeneous population.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius Gesellschaft zur Förderung der Wissenschaften, Hamburg.Supported by the Swedish Natural Research Council (No. 99-35). This work was in part carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-56-06 and B70-14X-712-05).Supported by the Deutsche Forschungsgemeinschaft and USPHS Research Grant TW 00295-02.  相似文献   

6.
Summary Using the electron-microscopic immunogold method, vasotocin, isotocin, somatostatin (SRIF), gonadotrophin-releasing hormone (LHRH) and corticotrophin-releasing factor (CRF)-like immunoreactivities were localized in separate neurosecretory fibres in the pituitary of a teleost fish Poecilia latipinna. Antigenicities were preserved in sections of conventionally fixed tissue, except in the case of LHRH and CRF-like substances which were sensitive to osmium postfixation. Under the same fixation conditions, ultrastructural differences were observed between the 5 fibre types, and morphometric analysis of their granule sizes revealed significant differences in mean diameter except between vasotocin and isotocin fibres.Terminal-like regions of each type were identified on blood vessels, glial cells or other fibres in the neurohypophysis, on the basement lamina of the adenohypophysis, or directly on adenohypophysial endocrine cells. The fibres containing the two neurohypophysial hormones, originating from separate preoptic perikarya, were intermingled with, and may form endings near all the adenohypophysial cell types except those secreting prolactin. Although both types had similar mean granule diameters, the granules in the vasotocin fibres (mean 135 nm) were markedly less electron dense than those in the isotocin fibres (mean 140 nm). SRIF-immunoreactive fibres (mean 101 nm) appeared to form synapse-like endings on the somatotrophs, and a few thyrotrophs in the proximal pars distalis, and near the pars intermedia cells. An LHRH-positive type (mean 103 nm) contacted only the gonadotrophs of the proximal pars distalis. The rarer CRF-like fibres (mean 116 nm) appeared to project mainly towards the pars intermedia, but a few appeared to terminate rostrally near the adrenocorticotrophic cells.The significance of these observations is discussed in relation to the direct neurosecretory control of adenohypophysial function in teleosts.  相似文献   

7.
Summary The filum terminale, or terminal portion of the spinal cord, was studied in normal adult frogs (Rana pipiens) by means of light and electron microscopy. Astroglial cells are the predominant elements in this region. The rostral portion of the filum terminale consists mainly of (1) a peripheral dense ring of myelinated and some unmyelinated nerve fibers, and processes of astrocytes terminating at the subpial space; (2) an intermediate zone, in which astrocytes are the main cellular elements in addition to a few degenerated neurons; and (3) a central region where the central canal is lined by dark and light ependymal cells. In the caudal portion of the filum terminale, the amount of neuropil is greatly reduced. This region is formed mainly by astrocytic glial cells and very few neuronal elements. The central canal in the caudal portion is located ventrally and contains a lining consisting almost exclusively of dark ependymal cells.  相似文献   

8.
In order to make an immunohistochemical analysis of the development of the caudal neurosecretory system of the chum salmon, Oncorhynchus keta, we employed the peroxidase-anti-peroxidase technique using antisera specific for urotensins (U) I and II on artificially reared embryos, larvae, and juveniles of this species. Immunoreactivities for UI and UII were first demonstrated in the embryo immediately before hatching, showing labeled perikarya and fibers in the most caudal region of the spinal cord where the presumptive caudal neurosecretory system is located. However, distinct differentiation of the histological neurohemal organ had not yet begun in the embryo. Immunoreactive perikarya and fibers gradually increased in number, and an elaborate urophysis comparable to that of adults was demonstrated in the larvae about 5 months after hatching. At this stage, weak immunoreactivity against UI was detected in the neurohypophysis.  相似文献   

9.
Summary A double immunofluorescence method was devised to localize simultaneously urotensin-I (UI) and -II (UII) immunoreactivities in the caudal neurosecretory system of the goby, Gillichthys mirabilis. In a sequential fashion, sections of the posterior spinal cord and urophysis were treated with antiserum to corticotropin-releasing factor (CRF) that cross-reacts with UI, fluorescein-conjugated sheep anti-rabbit IgG, biotinylated anti-UII and rhodamine-conjugated avidin. UI and UII immunoreactivities appeared to coexist in some neurons and in most fibers and urophysial tissue; the remainder of the fibers and urophysis and the majority of neurons were immunoreactive for CRF/ UI only. No convincing evidence of immunoreactivity for UII only was found. A few nonreactive cells were seen, but these may not be neurosecretory neurons. The two immunoreactive cell types were not segregated topographically, and the intensity of perikaryal immunofluorescence for CRF/UI was variable. To explain these results a hypothesis that all caudal neurosecretory cells may synthesize both UI and UII and that immunoreactive differences may reflect different states of cellular activity, is suggested. This sequential double immunofluorescence method offers several advantages over other techniques and is especially useful for co-localization studies when primary antisera from different species are not available.  相似文献   

10.
Ptacek MB 《Genetica》2002,116(2-3):329-342
Differences in male morphology and mating behaviors are thought to confer species sexual isolation between sailfin and shortfin species of mollies. This study used interspecific crosses between the sailfin molly, P. latipinna, and the shortfin molly, P. mexicana, to investigate patterns of inheritance of morphological traits and behavioral rates of three mating behaviors in F1 hybrid males. The two parental species showed clear species differences with respect to the length of the dorsal fin and dorsal fin ray number. First generation hybrid males were intermediate between the two parental species for dorsal fin length and fin ray number, suggesting autosomal control of this trait with little effect of dominance by genes from either parental species. Parental species showed clear species differences in their rates of courtship displays. Unlike the pattern for dorsal fin morphology, F1 hybrid males showed a clear distinction in display rates with respect to the direction of the interspecific cross. Male hybrids whose sires were P. latipinna had courtship display rates that were up to three times higher than the rates of displays performed by hybrid males whose fathers were P. mexicana. The distribution of phenotypes between the parental species and that of hybrid males sired by that parental species was nearly identical. Such a pattern suggests the influence of Y-linked genes on the inheritance of courtship display rates in mollies.  相似文献   

11.
This study documents neuronal differentiation in vitro from undifferentiated precursor cells of caudalmost regenerating spinal cord of the teleost Apteronotus albifrons. At 11 days in vitro, cells from the caudalmost tip of the regenerating cord are flat and polygonal in shape, lack neuronal processes and do not stain with antibody against neuron-specific filaments. At 15 days in vitro, some of the caudalmost cells have developed short, neurite-like processes; at 18 days in vitro, some cells react positively with antibody against neuron-specific filaments. At 26 days in vitro, many of the caudalmost cells have long branching neurites and react positively with anti-neurofilament antibody. Addition of insulin-like growth factor-I to the medium accelerates the process of neuronal differentiation from the caudalmost precursor cells in vitro. The source of these precursor cells is ultimately cells of the ependymal layer of adult spinal cord. Further investigation of the factors that control production and differentiation of these cells will be important in defining the developmental potential possible for vertebrate spinal cord cells and may aid in creating an optimal environment for regeneration of axons within mammalian spinal cord.  相似文献   

12.
Summary Glyoxylic-acid-induced fluorescence of catecholamines and antibodies against serotonin and FMRFamide were used to study the distribution of putative neurotransmitters in the actinotroch larva ofPhoronis muelleri Selys-Longchamps, 1903. Catecholamines occur in the neuropile of the apical ganglion, in the longitudinal median epistome nerves, in the epistome marginal nerves, and in the nerve along the bases of the tentacles. The tentacles have laterofrontal and latero-abfrontal bundles of processes that form two minor nerves along the lateral ciliary band of the tentacles, and a medio-frontal bundle of processes. Monopolar cells are located on the ventro-lateral part of the mesosome. Processes are located along the posterior ciliary band and as a reticulum in the epidermis. Serotonin-like immunoreactive cells and processes are located in the apical ganglion, in the longitudinal median epistome nerves, and as a dorsal and ventral pair of bundles along the tentacle bases. Processes from the latter extend into the tentacles as the medioabfrontal processes. The latero-abfrontal processes form a minor nerve along the ciliary band. The dorsal bundles forms the major nerve ring along the tentacles and processes extend from it to the metasome. Processes are located along the posterior ciliary band. FMRFamide-like immunoreactive cells and processes are found in the apical ganglion, in the longitudinal median epistome nerves and as a pair of lateral epistome processes projecting towards the ring of tentacles. In the tentacles, a pair of latero-frontal processes are found; these form a minor nerve along the ciliary band. A band of cells can be seen along the tentacle ring.  相似文献   

13.
The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.  相似文献   

14.
We examined the effect of predation risk on female association patterns in the live-bearing sailfin molly (Poecilia latipinna). We tested two classes of females, with and without the risk of predation by a green sunfish (Lepomis cyanellus): (1) postpartum females (maintained with males until visibly gravid, then isolated and tested within 24–48 h of dropping a brood); and (2) non-postpartum females (different females, isolated from males for >50 days). When there was no apparent risk of predation, postpartum females showed a significant preference for large over small males, whereas non-postpartum females showed no size preference at all. When there was an apparent risk of predation, postpartum females maintained their preference for larger males and non-postpartum females continued to show no preference for large or small males. These results suggest that reproductive status (receptivity) plays a greater role in mate preference than predation risk. For postpartum females, the cost of not choosing a preferred mate may outweigh the potential cost of predation. Non-postpartum females either do not benefit from mating or are being indecisive about mating and thus are less likely to be choosy whether or not a predator is present.Communicated by I. Schlupp  相似文献   

15.
Summary The ultrastructure of the accessory outer segment (AOS) — a ciliumlike structure emanating from the inner segment and running alongside the outer segment of photoreceptors — is described. The AOS occurs in both rods and cones of Poecilia reticulata. Its ultrastructure, including the arrangement of microtubules, which originate from the ciliary stalk, is the same in rods and cones. The cone-AOS is connected with the outer segment by a thin plasmabridge, whereas the rod-AOS lies embedded within the outer segment. The outer segment of the cone, in contrast to that of the rod, is separated from the pigment epithelium by a large extracellular space. An intimate contact, however, is secured by the AOS; its membrane is closely appositioned to the pigment epithelium membrane. The functional significance of the AOS and its possible occurrence in other vertebrate classes, are discussed.  相似文献   

16.
Summary This immunocytochemical study describes the presence of separate immunoreactive (IR)-urotensin II (UII) and IR-somatostatin (SOM) systems in the spinal cord of two species of teleost fish. Both systems are arranged in a close spatial interrelationship in which IR-SOM fibres apparently innervate cerebrospinal fluid (CSF)-contacting IR-UII neurons. Specimens of Oncorhynchus kisutch also display CSF-contacting IR-SOM neurons located in the lateral ependymal walls of the central canal, in addition to CSF-contacting IR-UII neurons located ventrally. It is suggested that, in this species, CSF-contacting IR-SOM and IR-UII neurons perceive different stimuli from the CSF and are integrated in such a way that one peptidergic system may modulate the function of the other.  相似文献   

17.
Intraspinal serotonin-positive cells and fibers were examined in the chicken lumbar spinal cord following removal of descending serotonin fibers by spinal transection. Co-localization of Leu-enkephalin immunoreactivity in intraspinal serotonin cells was also examined using a double immunofluorescence labeling technique. By one or two weeks after spinal transection, virtually all supraspinal serotonin fibers were eliminated. Intraspinal serotonin cells were located ventral or ventrolateral to the central canal corresponding to laminae VII, VIII, and IX, and the anterior funiculus. Intraspinal serotonin cells sent fibers to (1) the pia mater on the ventral or ventrolateral surface of the spinal cord; (2) vessels in the spinal cord; (3) sympathetic preganglionic column of Terni; (4) other intraspinal serotonin neurons; (5) the central canal. Some 30%–50% of the intraspinal serotonin cells co-localized with Leu-enkephalin. Intraspinal serotonin fibers co-containing Leu-enkephalin were observed in the pia mater located on the most lateral surface of the spinal cord. Permanent address: This study was supported by Grant-in-Aid for Scientific Research on Priority Area from the Ministry of Education, Science and Culture, Japan.  相似文献   

18.
Summary Gonadotropin releasing hormone (GnRH) and gonadotropic hormone (GTH) were identified by immunohistochemistry in the brains and pituitaries of neonate, juvenile and adult guppies. GTH was present in some cells of the pars intermedia (pi) and proximal pars distalis (ppd) of all animals. GnRH was found in the perikarya of the nucleus olfactoretinalis. In the pituitaries of juvenile 30-day-old guppies, GnRH-immunoreactive cells existed in a juvenile pattern, whereas in adult animals GnRH was recognized in only a few cells. GnRH-immunoreactive fibers were seen in the pituitaries of animals that were 30 days or older. In adult guppies, the ventral and lateral ppd (the gonadotropic region) contained a dense network of GnRH-immunoreactive fibers. Pituitary cells staining for either GnRH or GTH were located in different places. After immunohistochemical double staining of adult pituitaries, none of the GnRH-immunoreactive cells were LH-immunoreactive, although both cell types were often found in close proximity. After 20 days or more of ethinylestradiol treatment, less immunoreactive GnRH was detected in the pituitary cells of juvenile guppies, and fewer animals exhibited the juvenile pattern of GnRH-immunoreactive pituitary cells, when compared with untreated controls. The results indicate that GnRH-immunoreactive pituitary cells in the guppy are distinct from gonadotropes and that these cells are involved in regulatory processes along the juvenile brain-pituitary-gonad axis.  相似文献   

19.
Summary Immunohistochemical and ultrastructural techniques have been used to demonstrate glial fibrillary acidic protein (GFAP) immuno-positive cells in the adult toad spinal cord. Two types of GFAP-immunoreactive cells were observed: ependymocytes and radial astrocytes. GFAP-positive ependymocytes were scarce and contained the immunoreactive product in their processes. They showed intermediate filaments in the basal pole and in their processes when studied with the electron microscope. These immuno-positive ependymocytes represent the tanycytic form of ependymal cells because their processes ended at the subpial zone. The radial astrocytes showed a more intensive immunoreactive product in somata and processes when they were located far away from the ependymal layer. Cell bodies and processes were also associated with blood vessels, but most of the processes ended at the subpial zone forming a continuous subpial glia limitans. The GFAP-positive processes, which form this subpial glia limitans in the toad spinal cord, belong to both tanycytic ependymocytes and radial astrocytes, whose somata are located in the grey matter. These findings lead us to suggest that both types of GFAP-immunopositive cells might be the functional equivalents of mammalian astrocytes.  相似文献   

20.
The caudal neurosecretory system is described here for the first time in the zebrafish, one of the most important models used to study biological processes. Light- and electron-microscopical approaches have been employed to describe the structural organization of Dahlgren cells and the urophysis, together with the immunohistochemical localization of urotensin I and II (UI and UII) peptides. Two latero-ventral bands of neuronal perikarya in the caudal spinal cord project axons to the urophysis. The largest secretory neurons (~20 μm) are located rostrally. UII-immunoreactive perikarya are much more numerous than those immunoreactive for UI. A few neurons are immunopositive for both peptides. Axons contain 75-nm to 180-nm dense-core vesicles comprising two populations distributed in two axonal types (A and B). Large dense vesicles predominate in type A axons and smaller ones in type B. Immunogold double-labelling has revealed that some fibres contain both UI and UII, sometimes even within the same neurosecretory granule. UII is apparently the major peptide present and predominates in type A axons, with UI predominating in type B. A surprising finding, not previously reported in other fish, is the presence of dense-core vesicles, similar to those in neurons, in astrocytes including their end-feet around capillaries. Secretory type vesicles are also evident in ependymocytes and cerebrospinal-fluid-contacting neurons in the terminal spinal cord. Thus, in addition to the urophysis, this region may possess further secretory systems whose products and associated targets remain to be established. These results provide the basis for further experimental, genetic and developmental studies of the urophysial system in the zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号