首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the virus''s requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.  相似文献   

2.
Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the “Warburg effect” in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication.  相似文献   

3.
White spot syndrome virus (WSSV) causes disease and mortality in cultured and wild shrimp. A standardized WSSV oral inoculation procedure was used in specific pathogen-free (SPF) Litopenaeus vannamei (also called Penaeus vannamei) to determine the primary sites of replication (portal of entry), to analyze the viral spread and to propose the cause of death. Shrimp were inoculated orally with a low (10(1.5) shrimp infectious dose 50% endpoint [SID50]) or a high (10(4) SID50) dose. Per dose, 6 shrimp were collected at 0, 6, 12, 18, 24, 36, 48 and 60 h post inoculation (hpi). WSSV-infected cells were located in tissues by immunohistochemistry and in hemolymph by indirect immunofluorescence. Cell-free hemolymph was examined for WSSV DNA using 1-step PCR. Tissues and cell-free hemolymph were first positive at 18 hpi (low dose) or at 12 hpi (high dose). With the 2 doses, primary replication was found in cells of the foregut and gills. The antennal gland was an additional primary replication site at the high dose. WSSV-infected cells were found in the hemolymph starting from 36 hpi. At 60 hpi, the percentage of WSSV-infected cells was 36 for the epithelial cells of the foregut and 27 for the epithelial cells of the integument; the number of WSSV-infected cells per mm2 was 98 for the gills, 26 for the antennal gland, 78 for the hematopoietic tissue and 49 for the lymphoid organ. Areas of necrosis were observed in infected tissues starting from 48 hpi (low dose) or 36 hpi (high dose). Since the foregut, gills, antennal gland and integument are essential for the maintenance of shrimp homeostasis, it is likely that WSSV infection leads to death due to their dysfunction.  相似文献   

4.
A standardized inoculation model was used in 2 separate experiments to gauge the virulence of 3 white spot syndrome virus (WSSV) isolates from Thailand and Vietnam (WSSV Thai-1, WSSV Thai-2, and WSSV Viet) in Penaeus vannamei juveniles. Mortality patterns (Expt 1) were compared and WSSV-positive cells quantified (Expt 2) in tissues following intramuscular inoculation of shrimp with the most (WSSV Thai-1) and least (WSSV Viet) virulent isolates as determined by Expt 1. The results of Expt 1 demonstrated that mortalities began at 36 h post inoculation (hpi) for both Thai isolate groups and at 36 to 60 hpi for the Viet isolate group. Cumulative mortality reached 100% 96 to 240 h later in shrimp challenged with the WSSV Viet isolate compared to shrimp challenged with the Thai isolates. WSSV infection was verified in all groups by indirect immunofluorescence. In Expt 2, WSSV-infected cells were quantified by immunohistochemical analysis of both dead and time-course sampled shrimp. WSSV-positive cells were detected in tissues of Thai-1 inoculated dead and euthanized shrimp from 24 hpi onwards and from 36 hpi onwards in shrimp injected with the Viet isolate. Significantly more infected cells were found in tissues of dead shrimp inoculated with the Thai-1 than in Viet isolate-inoculated shrimp. In these experiments, substantial differences in virulence were demonstrated between the WSSV isolates. The Vietnamese isolate induced a more chronic disease and mortality pattern than was found for the Thai isolates, possibly because it infected fewer cells. This difference was most pronounced in gills.  相似文献   

5.
Voltage-dependent anion channel (VDAC) is a key mitochondrial protein. VDAC drives cellular energy metabolism by controlling the influx and efflux of metabolites and ions through the mitochondrial membrane, playing a role in its permeabilization. This protein exerts a pivotal role during the white spot syndrome virus (WSSV) infection in shrimp, through its involvement in a particular metabolism that plays in favor of the virus, the Warburg effect. The Warburg effect corresponds to an atypical metabolic shift toward an aerobic glycolysis that provides energy for rapid cell division and resistance to apoptosis. In the Pacific oyster Crassostrea gigas, the Warburg effect occurs during infection by Ostreid herpesvirus (OsHV-1). At present, the role of VDAC in the Warburg effect, OsHV-1 infection and apoptosis is unknown. Here, we developed a specific antibody directed against C. gigas VDAC. This tool allowed us to quantify the tissue-specific expression of VDAC, to detect VDAC oligomers, and to follow the amount of VDAC in oysters deployed in the field. We showed that oysters sensitive to a mortality event in the field presented an accumulation of VDAC. Finally, we propose to use VDAC quantification as a tool to measure the oyster susceptibility to OsHV-1 depending on its environment.  相似文献   

6.
7.
The thioredoxin (TRX) system in crustaceans has demonstrated to act as a cell antioxidant being part of the immune response by dealing with the increased production of reactive oxygen species during bacterial or viral infection. Since the number of marine viruses has increased in the last years significantly affecting aquaculture practices of penaeids, and due to the adverse impact on wild and cultured shrimp populations, it is important to elucidate the dynamics of the shrimp response to viral infections. The role of Litopenaeus vannamei thioredoxin (LvTRX) was compared at both, mRNA and protein levels, in response to two viruses, the white spot syndrome virus (WSSV) and the infectious hypodermal and hematopoietic necrosis virus (IHHNV). The results confirmed changes in the TRX gene expression levels of WSSV-infected shrimp, but also demonstrated a more conspicuous response of TRX to WSSV than to IHHNV. While both the dimeric and monomeric forms of LvTRX were detected by Western blot analysis during the WSSV infection, the dimer on its reduced form was only detected through the IHHNV infectious process. These findings indicate that WSSV or IHHNV infected shrimp may induce a differential response of the LvTRX protein.  相似文献   

8.
The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453.  相似文献   

9.
White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host.  相似文献   

10.
Chen AJ  Wang S  Zhao XF  Yu XQ  Wang JX 《Journal of virology》2011,85(16):8069-8079
Recent studies have shown that the ubiquitin (Ub) proteasome pathway (UPP) is closely related to immune defense. We have identified a ubiquitin-conjugating enzyme, E2, from the Chinese white shrimp, Fenneropenaeus chinensis (FcUbc). Injection of recombinant FcUbc protein (rFcUbc) reduced the mortality of shrimp infected with white spot syndrome virus (WSSV) and inhibited replication of WSSV. rFcUbc, but not a mutant FcUbc (mFcUbc), bound to WSSV RING domains (WRDs) from four potential E3 ligase proteins of WSSV in vitro. Importantly, rFcUbc could ubiquitinate the RING domains (named WRD2 and WRD3) of WSSV277 and WSSV304 proteins in vitro and the two proteins in WSSV-infected Drosophila melanogaster Schneider 2 (S2) cells. Furthermore, overexpression of FcUbc increased ubiquitination of WSSV277 and WSSV304 during WSSV infection. In summary, our study demonstrates that FcUbc from Chinese white shrimp inhibited WSSV replication and could ubiquitinate WSSV RING domain-containing proteins. This is the first report about antiviral function of Ubc E2 in shrimp.  相似文献   

11.
The concept of polymicrobial disease is well accepted in human and veterinary medicine but has received very little attention in the field of aquaculture. This study was conducted to investigate the synergistic effect of white spot syndrome virus (WSSV) and Vibrio campbellii on development of disease in specific pathogen-free (SPF) shrimp Litopenaeus vannamei. The juvenile shrimp were first injected with WSSV at a dose of 30 SID(50) shrimp(-1) (SID(50) = shrimp infectious dose with 50% endpoint) and 24 h later with 10(6) colony-forming units (cfu) of V. campbellii shrimp(-1). Controls receiving just one of the pathogens or negative inocula were included. In the treatment with WSSV only, shrimp started to die at 48-108 h post injection (hpi) and cumulative mortality reached 100% at 268-336 hpi. In the treatment with only V. campbellii injection (10(6) cfu shrimp(-1)), cumulative mortality reached 16.7%. Shrimp in the dual treatment died very quickly after V. campbellii injection and 100% cumulative mortality was obtained at 72-96 hpi. When WSSV-injected shrimp were given sonicated V. campbellii instead of live V. campbellii, no synergistic effect was observed. Density of V. campbellii in the haemolymph of co-infected moribund shrimp collected 10 h after V. campbellii injection was significantly higher than in shrimp injected with V. campbellii only (P < 0.01). However, there was no difference in WSSV replication between shrimp inoculated with WSSV only compared with dually inoculated ones. This study revealed that prior infection with WSSV enhances the multiplication and disease inducing capacity of V. campbellii in shrimp.  相似文献   

12.
In this study we found that a blue shrimp (Litopenaeus stylirostris) lysozyme gene (Lslzm) was up-regulated in WSSV-infected shrimp, suggesting that lysozyme is involved in the innate response of shrimp to this virus. Shrimp were intramuscularly injected with Lslzm protein to identify how this recombinant protein protects L. stylirostris from WSSV infection and to determine how this protein influences nonspecific cellular and humoral defense mechanisms. Higher survival rates and a lower viral load (compared with controls) were reported for shrimps that were first injected with the Lslzm protein and then infected with WSSV. In addition, the Lslzm expression level and the immunological parameters (including THC, phagocytic activity, respiratory burst activity, phenoloxidase activity and lysozyme activity) were all significantly higher in the WSSV-infected shrimp treated with the Lslzm protein, compared with the controls. These results indicate that lysozyme is effective at blocking WSSV infection in L. stylirostris and that lysozyme modulates the cellular and humoral defense mechanisms after they are suppressed by the WSSV virus.  相似文献   

13.
14.
15.
WSSV particles were detected in separated granular cells (GCs) and semigranular cells (SGCs) by in situ hybridisation from WSSV-infected crayfish and the prevalence of WSSV-infected GCs was 5%, whereas it was 22% in SGCs. This indicates that SGCs are more susceptible to WSSV and that this virus replicated more rapidly in SGCs than in GCs and as a result the number of SGCs gradually decreased from the blood circulation. The effect of haemocyte lysate supernatant (HLS), containing the degranulation factor (peroxinectin), phorbol 12-myristate 13-acetate (PMA), the Ca(2+) ionophore A23187 on GCs from WSSV-infected and sham-injected crayfish was studied. The results showed that the percentage of degranulated GCs of WSSV-infected crayfish treated with HLS or PMA was significantly lower than that in the control, whereas no significant difference was observed when treated with the Ca(2+) ionophore. It was previously shown that peroxinectin and PMA have a degranulation effect via intracellular signalling involving protein kinase C (PKC), whereas the Ca(2+) ionophore uses an alternative pathway. HLS treatment of GCs and SGCs from WSSV-infected crayfish results in three different morphological types: non-spread, spread and degranulated cells. The non-spread cell group from both GCs and SGCs after treatment with HLS had more WSSV positive cells than degranulated cells, when detected by in situ hybridisation. Taken together, it is reasonable to speculate that the PKC pathway might be affected during WSSV infection. Another interesting phenomenon was that GCs from non-infected crayfish exhibited melanisation, when incubated in L-15 medium, while no melanisation was found in GCs of WSSV-infected crayfish. However, the phenoloxidase activities of both sham- and WSSV-injected crayfish in HLS were the same as well as proPO expression as detected by RT-PCR. This suggests that the WSSV inhibits the proPO system upstream of phenoloxidase or simply consumes the native substrate for the enzyme so that no activity is shown. The percentage of apoptotic haemocytes in WSSV-infected crayfish was very low, but it was significantly higher than that in the sham-injected crayfish on day 3 or 5 post-infection. The TEM observation in haematopoietic cells (hpt cells) suggests that WSSV infect specific cell types in haematopoietic tissue and non-granular hpt cells seem more favourable to WSSV infection.  相似文献   

16.
In this study, we explored the pathogenic mechanism of white spot syndrome virus (WSSV) in crayfish, Cherax quadricarinatus, by investigating activities of enzymes related to innate immune function during infection. After 6-12 h of exposure to WSSV, the activities of four enzymes, phenoloxidase (PO), peroxidase (POD), superoxide dismutase (SOD) and lysozyme (LSZ), increased in the gills of C. quadricarinatus but then sharply decreased during longer infection times. Except for PO, the activities of other enzymes in the WSSV-infected crayfish (Group II) were significantly lower than those of the controls at 72 h post-exposure (P < 0.01). Interestingly, the enzyme activities in the group treated with polysaccharides before challenge with WSSV (Group III) were higher than those in Group II. This phenomenon demonstrated that the polysaccharides could improve the immuno-enzyme activities and enhance the organism's antiviral defenses. Morphological examination by transmission electron microscopy revealed abundant WSSV particles and significant damage in the gills of infected crayfish. WSSV infection caused parts of the gill epithelium and microvilli to be reduced in number and size or damaged; meanwhile, the mitochondria morphology changed, with parts of the cristae diminished leaving large vacuoles. Moreover, electron dense deposits appeared and heterochromatinized nuclei could be seen in blood cells with ruptured nuclear membranes and outflow of nucleoplasm. The findings of this study furthers our understanding of the biochemical alterations induced by viral infections, including changes in the antioxidant status, oxidative stress and lysozyme activity, which could help to advance strategies for control of WSSV in crayfish.  相似文献   

17.
Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.  相似文献   

18.
Growing evidence from mammals suggests that host microRNAs (miRNAs) play important roles in the antiviral immune response. However, the roles of invertebrate miRNAs in response to virus infection remain to be investigated. Based on our previous studies, the shrimp miR-7 was found to be upregulated in response to white spot syndrome virus (WSSV) infection. In this study, the results showed that shrimp miR-7 could target the 3′-untranslated region (3′UTR) of the WSSV early gene wsv477, implying that miR-7 was involved in viral DNA replication. In insect High Five cells, the synthesized miR-7 significantly decreased the expression level of the fluorescent construct bearing the 3′UTR of wsv477 compared with the expression of the control constructs. When the activity of transfected miR-7 was blocked by locked-nucleic-acid (LNA)-modified anti-miR-7 oligonucleotide (AMO-miR-7), the repression of luciferase gene expression by miR-7 was relieved. In vivo, when the synthesized miR-7 was injected into shrimp, the numbers of WSSV genome copies/mg gills were 1,000-fold lower than those of WSSV only at 72 and 96 h postinfection. The results indicated that the blocking of endogenous miR-7 by AMO-miR-7 led to about a 10-fold increase of WSSV genome copies/mg gills in WSSV-infected shrimp compared with the control WSSV only. Further, it was revealed that the host Dicer1 was an important component for the biogenesis of miR-7, which had a large effect on virus infection. Therefore, our study revealed a novel regulatory function for an invertebrate miRNA in host-virus interactions by targeting the viral early gene.  相似文献   

19.
White spot syndrome virus (WSSV) is a devastating pathogen in shrimp aquaculture. Standardized challenge procedures using a known amount of infectious virus would assist in evaluating strategies to reduce its impact. In this study, the shrimp infectious dose 50% endpoint (SID50 ml(-1)) of a Thai isolate of WSSV was determined by intramuscular inoculation (i.m.) in 60 and 135 d old specific pathogen-free (SPF) Litopenaeus vannamei using indirect immunofluorescence (IIF) and 1-step polymerase chain reaction (PCR). Also, the lethal dose 50% endpoint (LD50 ml(-1)) was determined from the proportion of dead shrimp. The median virus infection titers in 60 and 135 d old juveniles were 10(6.8) and 10(6.5) SID50 ml(-1), respectively. These titers were not significantly different (p > or = 0.05). The titration of the WSSV stock by oral intubation in 80 d old juveniles resulted in approximately 10-fold reduction in virus titer compared to i.m. inoculation. This lower titer is probably the result of physical and chemical barriers in the digestive tract of shrimp that hinder WSSV infectivity. The titers determined by infection were identical to the titers determined by mortality in all experiments using both i.m. and oral routes at 120 h post inoculation (hpi), indicating that every infected shrimp died. The determination of WSSV titers for dilutions administered by i.m. and oral routes constitutes the first step towards the standardization of challenge procedures to evaluate strategies to reduce WSSV infection.  相似文献   

20.
Chimeric positive plasmids have been developed to minimize false-positive reactions caused by polymerase chain reaction (PCR) contamination. Here, we developed a rapid method for identifying false-positive results while detecting white spot syndrome virus (WSSV) by nested PCR, using chimeric positive plasmids. The results of PCRs using WSSV diagnostic primer sets showed PCR products of a similar size (WSSV 1st PCR product, 1,447 bp; WSSV 2nd PCR product, 941 bp) using WSSV chimeric plasmids or DNA from shrimp infected with WSSV. The PCR products were digested with DraI for 1 h at 37 °C. The digested chimeric DNA separated into two DNA bands; however, the WSSV-infected shrimp DNA did not separate. Thus, chimeric plasmid DNA may be used as positive control DNA instead of DNA from WSSV-infected shrimp, in order to prevent PCR contamination. Thus, the use of restriction enzyme digestion allowed us to rapidly distinguish between WSSV DNA and WSSV chimeric plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号