首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acylase from Arthrobacter viscosus was immobilized, studied in the enzymatic synthesis of some cephalosporins by kinetically controlled N-acylation (kcNa) of different cephem nuclei, and compared with the penicillin G acylase (PGA) from Escherichia coli. The reaction outcomes were dependent on the acylase microbial source and on the type of immobilization support. Generally, both enzymes, when immobilized onto hydrophilic resins such as glyoxyl-agarose (activated with aldehyde groups), displayed higher synthetic performances in comparison with hydrophobic acrylic epoxy-supports like Eupergit C. The kcNa of 7-amino cephalosporanic acid catalyzed by A. viscosus immobilized on glyoxyl-agarose afforded a quantitative conversion in 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid, a useful intermediate for the synthesis of Cefamandole and Cefonicid. Similar results were obtained in the synthesis of these cephalosporins by direct acylation of the corresponding 3′-functionalized nucleus. In these reactions, A. viscosus displayed higher synthetic performances than the PGA from E. coli.  相似文献   

2.
The effect of methanol on the kinetically controlled synthesis of cephalexin by free and immobilized penicillin G acylase (PGA) was investigated. Catalytic and hydrophobic membranes were obtained by chemical grafting, activation, and PGA immobilization on hydrophobic nylon supports. Butyl methacrylate (BMA) was used as graft monomer. Increasing concentrations of methanol were found to cause a greater deleterious effect on the activity of free than on that of the immobilized enzyme. Methanol, however, improved the kinetic stability of cephalexin synthesized by free PGA, resulting in higher maximum yields. By contrast, immobilized PGA reached 100% yields even in the absence of the cosolvent. Cephalexin synthesis by the catalytic membrane was also performed in a non-isothermal bioreactor. Under these conditions, a 94% increase of the synthetic activity and complete conversion of the limiting substrate to cephalexin were obtained. The addition of methanol reduced the non-isothermal activity increase. The physical cause responsible for the non-isothermal behavior of the hydrophobic catalytic membrane was identified in the process of thermodialysis.  相似文献   

3.
In this work, we have used supports activated with m-amino-phenylboronic groups to “reversibly” immobilize proteins under very mild conditions. Most of the proteins contained in a crude extract from E. coli could be immobilized on Eupergit C-250 L activated with phenylboronic and then fully desorbed from the support by using mannitol or SDS. This suggested that the immobilization of the proteins on these supports was not only via sugars interaction, but also by other interaction/s, quite unspecific, that might be playing a key role in the immobilization of the proteins. Penicillin acylase from E. coli (PGA) was also immobilized in Eupergit C activated with m-amino-phenylboronic groups. The enzyme could be fully desorbed with mannitol immediately after being immobilized on the support. However, longer incubation times of the immobilized preparation caused a reduction of protein elution from the boronate support in presence of mannitol. Moreover, these immobilized preparations showed a higher stability in the presence of organic solvents than the soluble enzyme; the stability also improved when the incubation time was increased (to a factor of 100). By desorbing the weakest bound enzyme molecules, it was possible to correlate adsorption strength with stabilization; therefore, it seems that this effect was due to the rigidification of the enzyme via multipoint attachment on the support.  相似文献   

4.
Bovine liver catalase was immobilized on different supports. The tetrameric nature of this enzyme was found to cause its rapid inactivation in diluted conditions due to subunit dissociation, a fact that may rule out its industrial use. Multi-subunit immobilization using highly activated glyoxyl agarose was not enough to involve all enzyme subunits. In fact, washing the derivative produced a strong decrease in the enzyme activity. Further cross-linking of previously immobilized enzyme with tailor-made dextran-aldehyde permitted the multimeric structure to be fully stabilized using either multisubunit preparations immobilized onto highly activated glyoxyl-agarose support or one subunit enzymes immobilized onto poorly activated glyoxyl-agarose. The highest stability of the final biocatalyst was observed using the multisubunit immobilized derivative cross-linked with dextran-aldehyde. The optimal derivative retained around 60% of the immobilized activity, did not release any enzyme subunits after boiling in the presence of SDS, and did not lose activity during washing, and its stability did not depend on the dilution. This derivative was used for 10 cycles in the destruction of 10 mM hydrogen peroxide without any decrease in the enzyme activity.  相似文献   

5.
《Process Biochemistry》2010,45(1):107-113
First, the enzyme immobilized on cyanide bromide agarose beads (CNBr) (that did not involve all enzyme subunits in the immobilization) has been crosslinked with aldehyde-dextran. This preparation did not any longer release enzyme subunits and become fully stable at pH 4 and 25 °C.Then, the stabilities of many different enzyme preparations (enzyme immobilized on CNBr, that derivative further crosslinked with aldehyde-dextran, enzyme immobilized on highly activated amino-epoxy supports, GDH immobilized on supports having a few animo groups and many epoxy groups, GDH immobilized on glyoxyl-agarose beads at pH 7, and that preparation further incubated at pH 10, and finally the enzyme immobilized on this support directly at pH 10) were compared at pH 4 and high temperatures, conditions where both dissociation and distortion play a relevant role in the enzyme inactivation. The most stable preparation was that prepared at pH 7 and incubated at pH 10, followed by GDH immobilized on amino and epoxy supports and the third one was the enzyme immobilized on glyoxyl-agarose at pH 10.The incubation of all enzyme preparations in saturated guanidine solutions produced the full inactivation of all enzyme preparations. When not all enzyme subunits were immobilized, activity was not recovered at all. Among the other derivatives, only glyoxyl preparations (the most inert supports and those where a more intense multipoint covalent attachment were expected) gave significant reactivation when re-incubated in aqueous medium. After optimization of the reactivation conditions, the enzyme immobilized at pH 7 and later incubated at pH 10 recovered 100% of the enzyme activity.  相似文献   

6.
Covalent immobilization of cyclodextrin glycosyltransferase on glyoxyl-agarose beads promotes a very high stabilization of the enzyme against any distorting agent (temperature, pH, organic solvents). For example, the optimized immobilized preparation preserves 90% of initial activity when incubated for 22 h in 30% ethanol at pH 7 and 40 degrees C. Other immobilized preparations (obtained via other immobilization protocols) exhibit less than 10% of activity after incubation under similar conditions. Optimized glyoxyl-agarose immobilized preparation expressed a high percentage of catalytic activity (70%). Immobilization using any technique prevents enzyme inactivation by air bubbles during strong stirring of the enzyme. Stabilization of the enzyme immobilized on glyoxyl-agarose is higher when using the highest activation degree (75 micromol of glyoxyl per milliliter of support) as well as when performing long enzyme-support incubation times (4 h) at room temperature. Multipoint covalent immobilization seems to be responsible for this very high stabilization associated to the immobilization process on highly activated glyoxyl-agarose. The stabilization of the enzyme against the inactivation by ethanol seems to be interesting to improve cyclodextrin production: ethanol strongly inhibits the enzymatic degradation of cyclodextrin while hardly affecting the cyclodextrin production rate of the immobilized-stabilized preparation.  相似文献   

7.
The modulation of penicillin G acylase (PGA) properties via immobilization techniques has been performed studying the acylation of 7-aminocephalosporanic acid with R-mandelic acid methyl ester. PGA from Escherichia coli, immobilized onto agarose activated with glycidol (glyoxyl-agarose), has been used for the design of a novel one-pot synthesis of Cephamandole in aqueous medium and without isolation of intermediates, through three consecutive biotransformations catalyzed by D-amino acid oxidase, glutaryl acylase and PGA.  相似文献   

8.
Immobilization of alcohol dehydrogenase (ADH) from Horse Liver inside porous supports promotes a dramatic stabilization of the enzyme against inactivation by air bubbles in stirred tank reactors. Moreover, immobilization of ADH on glyoxyl-agarose promotes additional stabilization against any distorting agent (pH, temperature, organic solvents, etc.). Stabilization is higher when using highly activated supports, they are able to immobilize both subunits of the enzyme. The best glyoxyl derivatives are much more stable than conventional ADH derivatives (e.g., immobilized on BrCN activated agarose). For example, glyoxyl immobilized ADH preserved full activity after incubation at pH 5.0 for 20h at room temperature and conventional derivatives (as well as the soluble enzyme) preserved less than 50% of activity after incubation under the same conditions. Moreover, glyoxyl derivatives are more than 10 times more stable than BrCN derivatives when incubated in 50% acetone at pH 7.0. Multipoint covalent immobilization, in addition to multisubunit immobilization, seems to play an important stabilizing role against distorting agents. In spite of these interesting stabilization factors, immobilization hardly promotes losses of catalytic activity (keeping values near to 90%). This immobilized preparation is able to keep good activity using dextran-NAD(+). In this way, ADH glyoxyl immobilized preparation seems to be suitable to be used as cofactor-recycling enzyme-system in interesting NAD(+)-mediated oxidation processes, catalyzed by other immobilized dehydrogenases in stirred tank reactors.  相似文献   

9.
A mathematical model is presented for the kinetically controlled synthesis of cephalexin that describes the heterogeneous reaction-diffusion process involved in a batch reactor with glyoxyl-agarose immobilized penicillin acylase. The model is based on equations considering reaction and diffusion components. Reaction kinetics was considered according to the mechanism proposed by Schro?n, while diffusion of the reacting species was described according to Fick's law. Intrinsic kinetic and diffusion parameters were experimentally determined in independent experiments. It was found that from the four kinetic constants, the one corresponding to the acyl-enzyme complex hydrolysis step had the greatest value, as previously reported by other authors. The effective diffusion coefficients of all substances were about 5×10(-10)m(2)/s, being 10% lower than free diffusion coefficients and therefore agreed with the highly porous structure of glyoxyl-agarose particles. Simulations made from the reaction-diffusion model equations were used to evaluate and analyze the impact of internal diffusional restrictions in function of catalyst enzyme loading and particle size. Increasing internal diffusional restrictions decreases the Cex synthesis/hydrolysis ratio, the conversion yield and the specific productivity. A nonlinear relationship between catalyst enzyme loading and specific productivity of Cex was obtained with the implication that an increase in catalyst enzyme loading will not increase the volumetric productivity by the same magnitude as it occurs with the free enzyme. Optimization of catalyst and reactor design should be done considering catalyst enzyme loading and particle size as the most important variables. The approach presented can be extended to other processes catalyzed by immobilized enzymes.  相似文献   

10.
The potential application of lipoxygenase as a versatile biocatalyst in enzyme technology is limited by its poor stability. Two types of soybean lipoxygenases, lipoxygenase-1 and -2 (LOX-1 and LOX-2) were purified by a two step anion exchange chromatography. Four different commercially available supports: CNBr Sepharose 4B, Fractogel((R)) EMD Azlactone, Fractogel((R)) EMD Epoxy, and Eupergit((R)) C were tested for immobilization and stabilization of the purified isoenzymes. Both isoenzymes gave good yields in enzyme activity and good stability after immobilization on CNBr Sepharose 4B and Fractogel((R)) EMD Azlactone. Rapid decay in activity associated with change in the ionization state of Fe, as shown by EPR measurements was observed within the first 5 days after immobilization on epoxy activated supports (Eupergit((R)) C and Fractogel((R)) EMD Epoxy) in high ionic strength buffers. Stabilization of the biocatalyst on these supports was achieved by careful adjustment of the immobilization conditions. When immobilized in phosphate buffer of pH 7.5 and low ionic strength (0.05 M), the half-life time of the immobilized enzyme increased 20 fold. The dependence of the stability of LOX immobilized on epoxy activated supports on the coupling conditions was attributed to a modulation of the ligand environment of the iron in the active site and consequently its reactivity.  相似文献   

11.
Sepabeads-EP (a new epoxy support) has been utilized to immobilize-stabilize the enzyme penicillin G acylase (PGA) via multipoint covalent attachment. These supports are very robust and suitable for industrial purposes. Also, the internal geometry of the support is composed by cylindrical pores surrounded by the convex surfaces (this offers a good geometrical congruence for reaction with the enzyme), and it has a very high superficial density of epoxy groups (around 100 micromol/mL). These features should permit a very intense enzyme-support interaction. However, the final stability of the immobilized enzyme is strictly dependent on the immobilization protocol. By using conventional immobilization protocols (neutral pH values, nonblockage of the support) the stability of the immobilized enzyme was quite similar to that achieved using Eupergit C to immobilize the PGA. However, when using a more sophisticated three-step immobilization/stabilization/blockage procedure, the Sepabeads derivative was hundreds-fold more stable than Eupergit C derivatives. The protocol used was as follows: (i) the enzyme was first covalently immobilized under very mild experimental conditions (e.g., pH 7.0 and 20 degrees C); (ii) the already immobilized enzyme was further incubated under more drastic conditions (higher pH values, long incubation periods, etc.) in order to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; (iii) the remaining epoxy groups of the support were blocked with very hydrophilic compounds to stop any additional interaction between the enzyme and the support. This third point was found to be critical for obtaining very stable enzymes: derivatives blocked with mercaptoethanol were much less stable than derivatives blocked with glycine or other amino acids. This was attributed to the better masking of the hydrophobicity of the support by the amino acids (having two charges).  相似文献   

12.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

13.
Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend. Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin.  相似文献   

14.
A new immobilized biocatalyst for the racemization of L-glutamate on a preparative scale was developed. The gene encoding the glutamate racemase from Lactobacillus fermenti has been isolated by PCR amplification from its chromosomal DNA and overexpressed in Escherichia coli under the control of lac promoter. The recombinant enzyme (25-30% of total proteins) was rapidly immobilized on highly activated glyoxyl-agarose gels. The immobilized enzyme retained up to 80% of catalytic activity. In fact, 14 g of biocatalyst containing 20 mg of immobilized protein were able to racemize 90 mg of L-glutamic acid in less than 30 minutes.  相似文献   

15.
The controlled and partial modification of epoxy groups of Eupergit C and EP-Sepabeads with sodium sulfide has permitted the preparation of thiol-epoxy supports. Their use allowed not only the specific immobilization of enzymes through their thiol groups via thiol-disulfide interchange, but also enzyme stabilization via multipoint covalent attachment. Penicillin G acylase (PGA) from Escherichia coli and lipase from Rhizomucor miehei were used as model enzymes. Both enzymes lacked exposed cysteine residues, but were introduced via chemical modification under very mild conditions. In the first moments of the immobilization, a certain percentage of immobilized protein could be released from the support by incubation with DTT; this confirms that the first step was via a thiol-disulfide interchange. Moreover, the promotion of some further epoxy-enzyme bonds was confirmed because no enzyme release was detected after some immobilization time by incubation with DTT. In the case of the heterodimeric PGA, it was possible to demonstrate the formation of at least one epoxy bond per enzyme subunit by analyzing with SDS-PAGE the supernatants obtained after boiling the enzyme derivatives in the presence of mercaptoethanol and SDS. Thermal inactivation studies showed that these multipoint enzyme-support attachments promoted an increase in the stability of the immobilized enzymes. In both cases, the stabilization factor was around 12-15-fold comparing optimal derivatives with their just-thiol immobilized counterparts.  相似文献   

16.
Chlorophyllase extract from Phaeodactylum tricornutum was immobilized by physical adsorption on DEAE-cellulose and silica gel as well as by covalent binding on Eupergit C, Eupergit C250L, Eupergit C/ethylenediamine (EDA) and Eupergit C250L/EDA. Although the highest immobilization yield (83-93%) and efficiency (51-53%) were obtained when chlorophyllase extract was immobilized on DEAE-cellulose and silica gel, there was no improvement in the thermal stability of chlorophyllase as compared to that of the free one. The immobilization of chlorophyllase extract on Eupergit C250L/EDA resulted by a high recovery of enzymatic activity, with an immobilization efficiency of 44%, and promoted a higher stabilization of chlorophyllase (four times) in the aqueous/miscible organic solvent medium. On the other hand, the inhibitory effect of refined bleached deodorized (RBD) canola oil was reduced by immobilization of chlorophyllase extract onto silica gel as compared to those obtained with other enzyme preparations. However, the re-cycled chlorophyllase extract immobilized on Eupergit C250L/EDA retained more than 75% of its initial enzyme activity after 6 cycles, whereas that immobilized on silica gel was completely inactivated. The highest catalytic efficiency, for both free and immobilized chlorophyllase on Eupergit C250L/EDA, was obtained in the ternary micellar system as compared to the aqueous/miscible organic solvent and biphasic media.  相似文献   

17.
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016  相似文献   

18.
Bacillus licheniformis L-arabinose isomerase (BLAI) with a broad pH range, high substrate specificity, and high catalytic efficiency for L-arabinose was immobilized on various supports. Eupergit C, activated-carboxymethylcellulose, CNBr-activated agarose, chitosan, and alginate were tested as supports, and Eupergit C was selected as the most effective. After determination of the optimum enzyme concentration, the effects of pH and temperature were investigated using a response surface methodology. The immobilized BLAI enzyme retained 86.4% of the activity of the free enzyme. The optimal pH for the immobilized BLAI was 8.0, and immobilization improved the optimal temperature from 50 °C (free enzyme) to a range between 55 and 65 °C. The half life improved from 2 at 50 °C to 212 h at 55 °C following immobilization. The immobilized BLAI was used for semi-continuous production of L-ribulose. After 8 batch cycles, 95.1% of the BLAI activity was retained. This simple immobilization procedure and the high stability of the final immobilized BLAI on Eupergit C provide a promising solution for large-scale production of L-ribulose from an inexpensive L-arabinose precursor.  相似文献   

19.
Competition with well-established, fine-tuned chemical processes is a major challenge for the industrial implementation of the enzymatic synthesis of beta-lactam antibiotics. Enzyme-based routes are acknowledged as an environmental-friendly approach, avoiding organochloride solvents and working at room temperatures. Among different alternatives, the kinetically controlled synthesis, using immobilized penicillin G acylase (PGA) in aqueous environment, with the simultaneous crystallization of the product, is the most promising one. However, PGA may act either as a transferase or as a hydrolase, catalyzing two undesired side reactions: the hydrolysis of the acyl side-chain precursor (an ester or amide, a parallel reaction) and the hydrolysis of the antibiotic itself (a consecutive reaction). This review focuses specially on aspects of the reactions' kinetics that may affect the performance of the enzymatic reactor.  相似文献   

20.
Biotransformations catalyzed by free and immobilized enzymes have been carried out in aqueous suspensions with up to 25% (w/w) precipitated substrate or product. For the kinetically controlled synthesis of N-Acetyl-Tyr-Arg-NH(2) with up to 0.8 M insoluble activated substrate N-Acetyl-TyrOEt catalyzed by alpha-chymotrypsin (EC3.4.21.1) the dipeptide yield was found to be >90%. This and the space-time yields were higher than those observed for one-phase aqueous systems and much higher than in systems where the insoluble substrate had been solubilized by addition of organic solvents. In the equilibrium controlled hydrolysis of 0.4 M D-phenylglycine-amide catalyzed by immobilized penicillin amidase (EC 3.5.1.11) the product precipitates. The enzyme immobilized in the support with the smallest pores could be reused without reduction in the rate due to precipitation in the pores. This decreases the number of immobilized enzyme molecules that can be used as biocatalysts. The latter was observed for supports with larger pores as the solubility decreases with increasing particle size. These results demonstrate that biotransformations with insoluble substrates or products using free or immobilized enzymes can be easily carried out in aqueous two-phase systems, without organic solvents, provided that the pore sizes of the supports are sufficiently small and that the rate of mass transfer from the precipitated substrate is large. The latter increases with decreasing particle size. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号