首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinical immunity to Plasmodium falciparum malaria takes years to develop and is never complete. One explanation for these observations is that antigenic variation enables malaria parasites to evade humoral immunity; another is that P. falciparum induces immune dysregulation, which inhibits the development of protective cellular immunity. Research described by D'Ombrain et al. in this Cell Host & Microbe issue probes how the parasite's main virulence factor PfEMP-1 might significantly alter human innate immune responses.  相似文献   

2.
We consider a deterministic intra-host model for Plasmodium falciparum (Pf) malaria infection, which accounts for antigenic variation between n clonal variants of PfEMP1 and the corresponding host immune response (IR). Specifically, the model separates the IR into two components, specific and cross-reactive, respectively, in order to demonstrate that the latter can be a mechanism for the sequential appearance of variants observed in actual Pf infections. We show that a strong variant-specific IR relative to the cross-reactive IR favours the asynchronous oscillations (sequential dominance) over the synchronous oscillations in a number of ways. The decay rate of asynchronous oscillations is smaller than that for the synchronous oscillations, allowing for the parasite to survive longer. With the introduction of a delay in the stimulation of the IR, we show that only a small delay is necessary to cause persistent asynchronous oscillations and that a strong variant-specific IR increases the amplitude of the asynchronous oscillations.  相似文献   

3.
1. Seasonal variation in environmental conditions is ubiquitous and can affect the spread of infectious diseases. Understanding seasonal patterns of disease incidence can help to identify mechanisms, such as the demography of hosts and vectors, which influence parasite transmission dynamics. 2. We examined seasonal variation in Plasmodium infection in a blue tit Cyanistes caeruleus population over 3 years using sensitive molecular diagnostic techniques, in light of Beaudoin et al.'s (1971; Journal of Wildlife Diseases, 7, 5-13) model of seasonal variation in avian malaria prevalence in temperate areas. This model predicts a within-year bimodal pattern of spring and autumn peaks with a winter absence of infection. 3. Avian malaria infections were mostly Plasmodium (24.4%) with occasional Haemoproteus infections (0.8%). Statistical nonlinear smoothing techniques applied to longitudinal presence/absence data revealed marked temporal variation in Plasmodium prevalence, which apparently showed a within-year bimodal pattern similar to Beaudoin et al.'s model. However, of the two Plasmodium morphospecies accounting for most infections, only the seasonal pattern of Plasmodium circumflexum supported Beaudoin et al.'s model. On closer examination there was also considerable age structure in infection: Beaudoin et al.'s seasonal pattern was observed only in first year and not older birds. Plasmodium relictum prevalence was less seasonally variable. 4. For these two Plasmodium morphospecies, we reject Beaudoin et al.'s model as it does not survive closer scrutiny of the complexities of seasonal variation among Plasmodium morphospecies and host age classes. Studies of host-parasite interactions should consider seasonal variation whenever possible. We discuss the ecological and evolutionary implications of seasonal variation in disease prevalence.  相似文献   

4.
We have recently proposed a new model for antigenic variation in Plasmodium falciparum that relies on a network of partially cross-protective immune responses to orchestrate this complex immune evasion process. In addition to exhibiting prolonged oscillations of single variants that resemble the sequential dominance of immunologically distinct antigenic types, the model implies that a higher efficacy of cross-reactive immunity actually increases the length of infection while reducing severity of disease. Here, we analyse the behaviour of a reduced system under conditions of perfect synchrony between variants to demonstrate that these features of this system can be attributed to the antagonism between cross-reactive and variant-specific responses.  相似文献   

5.
Pathogens such as trypanosomes and malaria use antigenic variation to evade immune responses and prolong the duration of infections. As pathogens typically express more than one antigen, even relatively rare conserved antigens might be expected to trigger cross-reactive immune responses capable of clearing the infection. We use simple mathematical models that explicitly consider the dynamic interplay between the replicating pathogen, immune responses to different antigens and immune exhaustion to explore how pathogens can escape the responses to both variable and invariant (conserved) antigens. Our results suggest two hypotheses. In the first, limited quantities of invariant antigens on each pathogen may lead to saturation in killing by cross-reactive responses. In the second, antigenic variation of the dominant antigens prolongs the duration of infection sufficiently to allow for exhaustion of the cross-reactive responses to subdominant, invariant epitopes prior to their being able to control the infection. These hypotheses make distinct predictions: the former predicts that cross-reactive responses will always be ineffective while the latter predicts that appropriately timed treatment could, by preventing exhaustion, lead to the generation of long-lasting protective cross-reactive immunity and thus act similarly to a vaccine.  相似文献   

6.
Tuberculosis and malaria remain the leading causes of mortality among human infectious diseases in the world. It is estimated that 3 to 5 million people die from tuberculosis and malaria each year. Although it is traditionally believed that CD4 and CD8 alphabeta T lymphocytes are mandatory for protective immune responses against Mycobacterium tuberculosis and Plasmodium falciparum (the ethiologic agents of tuberculosis and the most severe form of malaria, respectively), there is still incomplete understanding of the mechanisms of immune protection and of the causes of its failure in the affected patients. Several studies in humans and animal models have suggested that Vgamma9/Vdelta2 T cells may play an important role in the immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. Vgamma9/Vdelta2 T cells represent about 75% of all circulating gammadelta T cells while they can be greatly expanded during the acute phase of Mycobacterium tuberculosis and Plasmodium falciparum malaria. Vgamma9/Vdelta2 T recognize a new class of antigenic molecules which are nonpeptidic in nature and contain critical phosphate moieties (phosphoantigens). Interestingly, phosphoantigens isolated from Mycobacterium tuberculosis and Plasmodium falciparum share strong structural homology and are probably identical. However, despite a large body of data reported in the literature, it is not yet clear whether Vgamma9/Vdelta2 T cells play a protective or pathogenic role in immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. In this review we summarize our current knowledge of the biology of Vgamma9/Vdelta2 T cells in response to the two pathogens, Mycobacterium tuberculosis and Plasmodium falciparum, and provide evidence suggesting definition of a novel and important protective role through which Vgamma9/Vdelta2 T cells can contribute to the killing of microorganisms residing in intracellular compartments.  相似文献   

7.
Erythrocytes (E) infected with asexual forms of malaria parasites exhibit surface antigenic variation. In Plasmodium falciparum infections, the variant Ag is the P. falciparum E membrane protein 1 (PfEMP1). This molecule may also mediate the adherence of infected E to host venular endothelium. We show here that parasite lines selected for increased adherence to endothelial cells have undergone antigenic variation. Three adherent lines selected from the same P. falciparum clone reacted with the same agglutinating antiserum that failed to agglutinate the parental clone. Immunoprecipitation experiments with the agglutinating anti-serum demonstrated that the selected lines expressed cross-reactive forms of PfEMP1 that were of higher m.w. and antigenically distinct from PfEMP1 of the parental clone. When one of the adherent lines was cloned in the absence of selection, a range of variant antigenic types emerged with differing cytoadherence phenotypes. These findings show that selection for cytoadherence in vitro favors the emergence of antigenic variants of P. falciparum and suggest that the requirement for cytoadherence in vivo may restrict the range of antigenic variants of P. falciparum in natural infections.  相似文献   

8.
9.
Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.  相似文献   

10.
We consider a deterministic intra-host model for Plasmodium falciparum (Pf) malaria infection, which accounts for antigenic variation between n clonal variants of PfEMP1 and the corresponding host immune response (IR). Specifically, the model separates the IR into two components, specific and cross-reactive, respectively, in order to demonstrate that the latter can be a mechanism for the sequential appearance of variants observed in actual Pf infections. We show that a strong variant-specific IR relative to the cross-reactive IR favours the asynchronous oscillations (sequential dominance) over the synchronous oscillations in a number of ways. The decay rate of asynchronous oscillations is smaller than that for the synchronous oscillations, allowing for the parasite to survive longer. With the introduction of a delay in the stimulation of the IR, we show that only a small delay is necessary to cause persistent asynchronous oscillations and that a strong variant-specific IR increases the amplitude of the asynchronous oscillations.  相似文献   

11.
Antigenic similarities between Plasmodium and Babesia parasites of the phylum Apicomplexa have been previously demonstrated primarily by the serological cross reactivity observed in the indirect fluorescent antibody (IFA) test. We have now studied the antigenic relationship between the human malaria parasite, Plasmodium falciparum, and the hemoparasitic agent of cattle, Babesia bovis, using rabbit monospecific antibodies produced against individual culture-derived P. falciparum polypeptides and bovine polyspecific antibodies to B. bovis exoantigens. These respective antibodies were found to be distinctly cross reactive in the IFA test using infected erythrocytes (squirrel monkey--P. falciparum; bovine--B. bovis) as antigen substrates. Immunofluorescence was shown to be highly specific for parasite surfaces. Additionally, the degree of reactivity with soluble exoantigens contained in Plasmodium and Babesia culture supernatants was monitored by a two-site enzyme immunoassay employing the cross-reactive antibodies. Further evidence for antigenic cross reactivity between P. falciparum and B. bovis parasites was shown with the in vitro inhibition assay. Antibodies to P. falciparum and B. bovis were found to be highly inhibitory for the in vitro growth of P. falciparum in human erythrocytes.  相似文献   

12.
Mannose-binding lectin (MBL) is a serum protein which initiates innate immune responses to microbial pathogens by binding to non-self surface oligosaccharides. MBL deficiency is the most common congenital immunodeficiency of human and has been shown to predispose to infections, particularly in children and immune compromised. In a matched case-control study among 870 Ghanaian children, we examined the influence of six polymorphisms of the MBL2 gene on Plasmodium falciparum infection and severe malaria. A missense mutation resulting in low MBL activity (MBL2*C) was found in 35% of healthy controls, but in 42% of asymptomatically infected children (P=0.01), and in 46% of patients with severe malaria (P=0.007). Heterozygosity for MBL2*C was associated with increased odds of infection (odds ratio (OR), 1.6; 95% confidence interval (CI), 1.1-2.1), severe malaria (OR, 1.7; 95% CI, 1.2-2.4), and of severe anemia in particular (OR, 2.3; 95% CI, 1.4-3.8). The population attributable fraction of severe malaria cases attributable to MBL2*C heterozygosity was 17%. Our results suggest that the MBL pathway of the complement system is a critical determinant of both, susceptibility to P. falciparum infection and manifestation of severe malaria, particularly in young children in whom specific immune responses are weak or absent.  相似文献   

13.
An immunovariant adhesion protein family in Plasmodium falciparum named erythrocyte membrane protein 1 (PfEMP1), encoded by var genes, is responsible for both antigenic variation and cytoadhesion of infected erythrocytes at blood microvasculature sites throughout the body. Elucidation of the genome sequence of P. falciparum has revealed that var genes can be classified into different groups, each with distinct 5' flanking sequences, chromosomal locations and gene orientations. Recent binding and serological comparisons suggest that this genomic organization might cause var genes to diversify into separately recombining adhesion groups that have different roles in infection and disease. Detailed understanding of PfEMP1 expression and receptor binding mechanisms during infection and of the antigenic relatedness of disease variants might lead to new approaches in prevention of malaria disease.  相似文献   

14.
The usual course of infection by Plasmodium falciparum among adults who lack a history of exposure to endemic malaria is fulminant. The infection in adults living with hyper- to holoendemic malaria is chronic and benign. Naturally acquired immunity to falciparum malaria is the basis of this difference. Confusion surrounds an essential question regarding this process: What is its rate of onset? Opinions vary because of disagreement over the relationships between exposure to infection, antigenic polymorphism and naturally acquired immunity. In this review, Kevin Baird discusses these relationships against a backdrop of host age as a determinant of naturally acquired immunity to falciparum malaria.  相似文献   

15.
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.  相似文献   

16.
17.
18.
Genetic studies of Plasmodium falciparum laboratory crosses and field isolates have produced valuable insights into determinants of drug responses, antigenic variation, disease virulence, cellular development and population structures of these virulent human malaria parasites. Full-genome sequences and high-resolution haplotype maps of SNPs and microsatellites are now available for all 14 parasite chromosomes. Rapidly increasing genetic and genomic information on Plasmodium parasites, mosquitoes and humans will combine as a rich resource for new advances in our understanding of malaria, its transmission and its manifestations of disease.  相似文献   

19.
We present the first mathematical model of the within-host dynamics of a mixed-species malaria infection in a human: the blood-stage population dynamics of a dual infection with Plasmodium malariae and Plasmodium falciparum. Our results reproduce several important features of such infections in nature, including the asymmetry of species asexual-form densities, inter-specific suppression through interactions with the human immune system, and seasonal alternations in species prevalence. Most importantly, our results suggest that an existing P. malariae infection can reduce the peak parasitemia of a subsequent P. falciparum superinfection by as much as 50%. This result integrates numerous empirical observations and supports the hypothesis that clinical outcomes of P. falciparum infections may be influenced by the presence of a congener.  相似文献   

20.
Malaria multigene families: the price of chronicity   总被引:5,自引:0,他引:5  
In this article, Georges Snounou, William Jarra and Peter Preiser discuss the survival strategy of malaria parasites in the light of a novel mechanism of clonal phenotypic variation recently described for a multigene family of Plasmodium yoelii yoelii. The 235 kDa rhoptry proteins (Py235) encoded by these genes may be involved in the selection of red blood cells for invasion by merozoites. The new mechanism may explain the ability of individual parasites to adapt to natural variations in red blood cell subsets, while ensuring that sufficient merozoites escape immune attack, thus maintaining a chronic infection for extended periods. This counterpoints the antigenic variation exemplified by PfEMP1 proteins (a large family of proteins derived from P. falciparum), which operates at the population level. The possibility of manipulating the expression of functionally similar genes in other Plasmodium species could lead to therapies aimed at reducing clinical severity without compromising the acquisition and maintenance of immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号