首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用体外厌氧共培养技术,研究了瘤胃真菌和纤维降解细菌在不同精粗比(A组为全粗料,B组3∶7,C组5∶5,D组7∶3,E组为全精料)底物下菌群变化及其共培养发酵特性。结果表明:与0h相比,发酵至24h时B组和C组的厌氧真菌数量有较大幅度的上升,A组和D组则有所下降,E组未检测到真菌生长;纤维降解细菌随精粗比的增加呈上升趋势。发酵至48h时,各组均未检测到真菌生长;从A组到C组细菌数量呈上升趋势,此后急剧下降。DGGE结果表明,A、B和C组(精粗比低于5∶5)的DGGE图谱相似,有11条共有条带,但是当精粗比上升到7:3时,条带数目显著下降。随精料比例的增加,整个发酵期共培养系统中pH值显著下降(P<0.05)。整个发酵期间,共培养系统发酵产生的VFA主要为乙酸,丙酸和丁酸的量较少,乙酸与丙酸比值从A组到C组呈下降趋势,此后呈上升趋势。随精料比例的上升,发酵48h时总挥发性脂肪酸浓度从A组到C组呈上升趋势,此后呈下降趋势。发酵48h的羧甲基纤维素酶活和木聚糖酶活均以A组最高,而α-淀粉酶活从A组到D组逐渐增大,而E组最低,仅为B、C、D组的1/4~1/3。  相似文献   

2.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the alpha, beta, and gamma Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

3.
The attachment of 14C-choline-labelled mixed rumen protozoa to barley straw in vitro was not significantly affected when bacteria prepared from rumen fluid were added to the incubation mixture. There was similarly little effect on protozoal attachment when the straw had already been colonized by a bacterial population for 24 h. In contrast, it was deduced from measurements of enzyme activities associated with straw that bacterial attachment was reduced if protozoa were present. Bacteria that had colonized the straw for 25 h beforehand were less susceptible to predation by protozoa.  相似文献   

4.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the α, β, and γ Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

5.
采用免培养的rpoB和16S rDNA基因的变性梯度凝胶电泳技术(DGGE)对3种山羊(波尔山羊,内蒙古绒山羊,四川南江黄羊)瘤胃细菌优势菌群结构进行了比较分析。研究结果显示rpoBDGGE图谱中条带数目少于16S rDNA图谱,并且条带分离效果明显,更有利于分析瘤胃细菌群落组成。从两种DGGE图谱中均可以发现3种山羊瘤胃细菌具有一定的相似性,种内个体间相似性明显高于种间相似性,这说明寄主品种是影响瘤胃细菌种群构成的一个重要因素。同时进行了部分优势细菌16S rDNA基因V6-V8区序列的系统发育分析。基因序列分析表明,DGGE图谱中优势条带的16S rDNA基因序列中有4条克隆的序列与基因库最相似菌的相似性大于97%,余下的克隆序列相似性在89%~96%之间,其中13条序列的与之相似性最高的序列均来自于未被鉴定的瘤胃细菌。  相似文献   

6.
为分析不同饲料喂养对黄牛胃中微生物群落结构的影响,分别用芒草单一喂养和农家混合饲料喂养两年的黄牛为实验组和对照组。以瘤胃、蜂巢胃、重瓣胃和皱胃四个胃中的微生物为研究对象,采用原位包埋裂解法和脉冲场电泳(pulsed field gel electrophoresis,PFGE)提取微生物总 DNA,脉冲场电泳(pulsed field gel elec-trophoresis,PFGE)。使用细菌16S rRNA 引物341F /534R 及真菌18S rDNA 引物 NS1/GCFungi 进行降落 PCR 扩增。变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)对扩增产物进行区分,使用硝酸银染色。电泳扫描结果通过 Quantity one 软件进行分析,SPSS 软件进行数据统计。针对实验组和对照组瘤胃样品共性条带和特性条带测序并比对。结果表明:实验组与对照组细菌群落结构变化较大,UPGAM聚类图上被分为两支,相似性只有0.35。且香农多样性指数及条带丰度都明显少于对照组。真菌 DGGE 图谱条带差别不大,聚类图上显示实验组四个样品与对照组四个样品相似性在0.43~0.68之间。多样性及条带丰度在实验组与对照组之间差异0.0027~0.5999。测序结果,细菌与数据库中未培养细菌种类较为接近,而真菌中部分与已知菌种接近。芒草单一饲养对牛胃中的微生物群落结构具有极大的影响,对细菌的影响尤为明显。  相似文献   

7.
【背景】瘤胃细菌发酵碳水化合物产生的短链脂肪酸(Short Chain Fatty Acid,SCFA),可作为燃料和化工产品的前体物。乙醇在碳链延伸产生己酸过程中具有重要作用,但对瘤胃发酵不同纤维类饲料产己酸能力的研究少有报道。【目的】揭示乙醇对纤维类饲料体外瘤胃发酵的SCFA产量差异,挖掘潜在的产C5和C6脂肪酸细菌。【方法】利用体外连续传代和Illumina HiSeq测序等技术,比较了添加乙醇对6种饲料产SCFA能力的影响以及细菌群落结构的差异。【结果】6种纤维类饲料的总SCFA产量顺序为黑麦草>小黑麦草>燕麦草>玉米芯>稻秸>甜叶菊。添加乙醇显著提高了小黑麦草、黑麦草的戊酸和己酸产量;细菌群落以厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)为优势菌门,乙醇显著提高了燕麦草组和小黑麦草组的放线菌门(Actinobacteria)和软壁菌门(Tenericutes)相对丰度;种水平上,甜叶菊、稻秸和玉米芯的优势菌与燕麦草、小黑麦草和黑麦草的优势菌相对丰度不同。相对丰度前10的细菌中,Prevotella sp. DJF CP...  相似文献   

8.
The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade) and the previous history of decomposition during the off-crop season.  相似文献   

9.
Microbial colonization is central to ruminal degradation of dietary material yet little is known about the dynamics of this process. The aim of this study was to characterize the initial stages of bacterial colonization of forage, and to assess the impact that different postsample processing and analysis methods had on the results obtained. Bacterial 16S rRNA gene-based analysis of damaged, nonconserved perennial ryegrass, incubated in sacco in the bovine rumen, required the development and validation of new quantitative PCR and denaturing gradient gel electrophoresis (DGGE) primers. Analysis with previously available primer sets was compromised due to dominant amplification of forage-derived chloroplast 16S rRNA genes. DGGE analysis of incubated samples demonstrated that a diverse and consistent population of ruminal bacteria colonized rapidly. Postsampling methodologies did not affect overall population profiles whereas the washing method appeared to influence bacterial numbers. However, regardless of processing methodology, bacterial numbers increased rapidly within 5 min, stabilizing after 15 min of incubation. These findings reveal for the first time the dynamics of bacterial colonization of forage within the rumen.  相似文献   

10.
福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析   总被引:6,自引:0,他引:6  
用不依赖细菌培养的16S rDNA-PCR-DGGE方法对福建省6个不同地区12个取样点的稻田土壤进行细菌群落结构分析.对12份样品直接提取其总DNA,用F341GC/R534引物扩增16SrDNA基因的V3可变区,结合DGGE(denaturing gradient gel electrophoresis)技术分析样品细菌群落组成.结果表明,福建省不同地区的稻田土壤之间细菌群落结构存在较大差异.犬体上可分为闽东、闽南、闽北、闽西4个大类.同一地区的根际土和表土样品之间也存在差异,但差异相对较低,其中龙岩根际土和表土细菌群落结构相似性最大,永泰差异性最大.回收了DGGE图谱中11个条带,测序结果经过Blast比对表明其中10个条带代表的细菌是不可培养的,显示了DGGE技术的优越性.  相似文献   

11.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

12.
The successional changes in the genetic diversity of Mediterranean bacterioplankton subjected to confinement were studied in an experimental 300 1 seawater enclosure. Five samples were taken at different times and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting to rapidly monitor changes in the bacterial genetic diversity. DGGE analysis clearly showed variations between the samples. Three of the five samples, with different DGGE banding patterns, were further analyzed by cloning and sequencing of 16S rRNA genes. Comparative sequence analysis indicated a shift from a mixed bacterial assemblage to a community dominated by bacteria closely affiliated to a single genus, Alteromonas. Sequences obtained at the start of the experiment were affiliated with two alpha-proteobacterial and three gamma-proteobacterial lineages known from other studies of marine picoplankton. One sequence was affiliated with the Verrucomicrobiales. After 161 h of incubation two sequences represented a gamma-proteobacterial lineage also present at 0 h, but the majority of sequences clustered around that of Alteromonas macleodii. After 281 h only the dominant Alteromonas-like bacteria and bacteria distantly related to Legionella were found by cloning and sequencing. Mortality rates of bacteria indicated that grazing was the dominant mortality process when heterotrophic protozoa were abundant. Hence, changes in the genetic diversity of bacteria were partly influenced by the differential mortality of bacterial populations during the course of incubation.  相似文献   

13.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

14.
旨在研究乙醇对山羊瘤胃液与水稻秸秆厌氧共培养的影响。利用频繁传代的体外发酵技术和高通量测序方法,分析了短链脂肪酸(SCFA)产量和细菌群落的变化。结果表明,经体外培养传代8次的稻秸发酵液的总短链脂肪酸产量显著高于瘤胃液(P<0.01);与未添加乙醇的稻秸发酵液相比,添加乙醇显著提高了乙酸、戊酸和己酸的比例,降低了丙酸和丁酸的比例(P<0.01),总SCFA产量及异丁酸和异戊酸比例无显著差异。与瘤胃液相比,稻秸发酵液的拟杆菌门(Bacteroidetes)相对丰度下降,厚壁菌门(Firmicutes)相对丰度升高(P<0.05),且添加乙醇显著提高了厚壁菌门和放线菌门(Actinobacteria)的相对丰度(P<0.05);添加乙醇使双歧杆菌属(Bifidobacterium)、未定性的毛螺菌属(unidentified Lachnospiraceae)、产琥珀酸菌属(Succiniclasticum)、脱硫弧菌属(Desulfovibrio)和未定性的梭菌属(unidentified Clostridiales)的相对丰度显著升高(P<0.05)。乙醇使稻秸发酵液的显著性差异物种(Biomarker)增加;稻秸发酵液与瘤胃液亲缘关系较近,而添加乙醇显著改变了细菌区系;短链脂肪酸比例在稻秸发酵液细菌群落多样性中具有重要作用。研究表明,体外频繁传代和添加乙醇可以提高稻秸发酵液的乙酸、戊酸和己酸产量,乙醇改变了稻秸发酵液的细菌群落结构。  相似文献   

15.
16.
【背景】氨氧化细菌是驱动硝化作用的关键微生物,其群落多样性变化对土壤氮素转化具有重要意义。转基因作物可能通过根系分泌物和植株残体组成的改变对土壤微生物群落产生影响。【方法】本研究通过田间定位试验,利用特异引物进行PCR-DGGE(聚合酶链反应—变性梯度凝胶电泳)和荧光定量PCR,分析了种植转cry1 Ac/cpti双价抗虫基因水稻第3、4年土壤中氨氧化细菌群落组成和丰度的变化。【结果】水稻各生育期(分蘖期、齐穗期和成熟期)内,转cry1 Ac/cpti基因杂交稻Ⅱ优科丰8号(GM)的土壤氨氧化细菌16S rRNA基因群落组成、多样性指数与其对应的非转基因杂交稻Ⅱ优明恢86(CK)间均没有显著差异;以DGGE条带为基础的氨氧化细菌群落组成的冗余分析(RDA)显示,GM和CK的土壤氨氧化细菌群落组成只与水稻生育期存在显著相关性(P=0.002和0.018);同时,水稻各生育期内土壤氨氧化细菌16S rRNA基因丰度在GM和CK间也没有显著差异,但均随水稻生长而变化且在齐穗期达到最高(P〈0.05)。【结论与意义】稻田土壤氨氧化细菌的群落组成与丰度在水稻不同生育期存在差异,但在转cry1 Ac/cpti基因水稻和非转基因水稻间没有显著差异,即一定时期内种植转cry1 Ac/cpti抗虫基因水稻不会影响土壤氨氧化细菌的群落组成和丰度。  相似文献   

17.
Artificially dried ryegrass, untreated and ammonia‐treated wheat straw were ground and incubated in nylon bags in the rumen of three sheep each fed with diets based on roughage or concentrate. Dry matter degradability, the concentration and the release of the trace elements Cu, Fe, Mn and Zn from the incubated feeds were measured after 0 (washing loss), 6, 12, 24, 48 and 72 h rumen incubation time.

Dry matter degradability, trace element concentration and their release were significantly influenced by the kind of incubated feeds, incubation time and feeding of sheep.

Cu‐ (1.8–6.9 mg kg?1 DM) and Zn concentrations (36–103 mg kg?1 DM) of straw residues in the bags were much higher than those of original straw (1.2–1.6 and 8.1–9.9 mg kg?1 DM resp.).

The inflow of Cu and Zn in the bags containing straw residues was higher than their release. The Cu‐, Fe‐ and Mn‐release from ryegrass was similar to the dry matter degradability, but the Zn‐release was much lower.  相似文献   

18.
We bred a microbial community capable of degrading rice straw with high efficiency. The microbial community degraded more than 60% of rice straw within 4 days at 50 °C. The high stability of the community's degradation ability was demonstrated by its tolerance of being subcultured several times in medium with/without cellulosic material, being heated to 95 °C, and freezing at –80 °C. The community degraded both nonsterilized and sterilized substrate; and its degradation ability was not affected by pH changes in the medium (initial pH 5–9). PCR-denaturing gradient gel electrophoresis (DGGE) analyses based on 16S rDNA fragments showed that the community structure remained constant after multiple subcultures extending over 2 years. DNA sequence analyses of DGGE bands indicated the coexistence of both aerobic and anaerobic bacteria in the community. Electronic Publication  相似文献   

19.
Our understanding of the ruminal epithelial tissue-associated bacterial (defined as epimural bacteria in this study) community is limited. In this study, we aimed to determine whether diet influences the diversity of the epimural bacterial community in the bovine rumen. Twenty-four beef heifers were randomly assigned to either a rapid grain adaptation (RGA) treatment (n = 18) in which the heifers were allowed to adapt from a diet containing 97% hay to a diet containing 8% hay over 29 days or to the control group (n = 6), which was fed 97% hay. Rumen papillae were collected when the heifers were fed 97%, 25%, and 8% hay diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis were used to characterize rumen epimural bacterial diversity and to estimate the total epimural bacterial population (copy numbers of the 16S rRNA gene). The epimural bacterial diversity from RGA heifers changed (P = 0.01) in response to the rapid dietary transition, whereas it was not affected in control heifers. A total of 88 PCR-DGGE bands were detected, and 44 were identified from phyla including Firmicutes, Bacteroidetes, and Proteobacteria. The bacteria Treponema sp., Ruminobacter sp., and Lachnospiraceae sp. were detected only when heifers were fed 25% and 8% hay diets, suggesting the presence of these bacteria is the result of adaptation to the high-grain diets. In addition, the total estimated population of rumen epimural bacteria was positively correlated with molar proportions of acetate, isobutyrate, and isovalerate, suggesting that they may play a role in volatile fatty acid metabolism in the rumen.  相似文献   

20.
Although the existence of 0.2 μm filterable bacteria has been known since the early 80's, they are not taken into consideration when modeling microbial food webs, due to an overall lack of information concerning this specific size class. According to physiological studies on starvation forms and investigations on small bacterial cells in marine ecosystems, a 0.2 μm filtrate may consist of different phenotypes: starvation forms of typical marine bacteria, ultramicrobacteria or bacterial cells, even larger than 0.2 μm, but flexible enough to pass the nominal filter pore-size. In this pilot study we examined three filtered seawater fractions from the Western Mediterranean Sea (Bay of Calvi, Corsica/France) - the total bacterial population, the bacterial fraction above 0.2 μm and the 0.2 μm filtrate - to investigate the bacterial community structure of each of those fractions by the molecular approach of denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments. The analysis of the resulting DGGE profiles revealed different patterns of dominant bands for the 0.2 μm filterable and the total bacterial populations within the samples. Additionally the 0.2 μm filterable bacterial compartment exhibited obvious differences in band patterns for winter and summer samples, which were not observed for the total bacterial fraction. According to the current knowledge concerning the status of 0.2 μm filterable bacteria, DGGE patterns indicate that most of the fragments representing 0.2 μm filterable bacteria were rather starvation forms of marine bacteria than ultramicrobacteria. The sequencing of excised and cloned DNA bands of the DGGE profiles characterized the phylogenetic affiliation of the corresponding 0.2 μm filterable bacteria, clustering mainly with known, typical marine isolates of both alpha-subclass and gamma-subclass of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides branch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号