首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that coagulation factor Xa (FXa) enhances activation of the fibrinolysis zymogen plasminogen to plasmin by tissue plasminogen activator (tPA). Implying that proteolytic modulation occurs in situ, intact FXa (FXaα) must be sequentially cleaved by plasmin or autoproteolysis, producing FXaβ and Xa33/13, which acquire necessary plasminogen binding sites. The implicit function of Xa33/13 in plasmin generation has not been demonstrated, nor has FXaα/β or Xa33/13 been studied in clot lysis experiments. We now report that purified Xa33/13 increases tPA-dependent plasmin generation by at least 10-fold. Western blots confirmed that in situ conversion of FXaα/β to Xa33/13 correlated to enhanced plasmin generation. Chemical modification of the FXaα active site resulted in the proteolytic generation of a product distinct from Xa33/13 and inhibited the enhancement of plasminogen activation. Identical modification of Xa33/13 had no effect on tPA cofactor function. Due to its overwhelming concentration in the clot, fibrin is the accepted tPA cofactor. Nevertheless, at the functional level of tPA that circulates in plasma, FXaα/β or Xa33/13 greatly reduced purified fibrin lysis times by as much as 7-fold. This effect was attenuated at high levels of tPA, suggesting a role when intrinsic plasmin generation is relatively low. FXaα/β or Xa33/13 did not alter the apparent size of fibrin degradation products, but accelerated the initial cleavage of fibrin to fragment X, which is known to optimize the tPA cofactor activity of fibrin. Thus, coagulation FXaα undergoes proteolytic modulation to enhance fibrinolysis, possibly by priming the tPA cofactor function of fibrin.  相似文献   

2.
Neurotransmitter release by catecholaminergic cells is negatively regulated by prohormone cleavage products formed from plasmin-mediated proteolysis. Here, we investigated the expression and subcellular localization of Plg-R(KT), a novel plasminogen receptor, and its role in catecholaminergic cell plasminogen activation and regulation of catecholamine release. Prominent staining with anti-Plg-R(KT) mAb was observed in adrenal medullary chromaffin cells in murine and human tissue. In Western blotting, Plg-R(KT) was highly expressed in bovine adrenomedullary chromaffin cells, human pheochromocytoma tissue, PC12 pheochromocytoma cells, and murine hippocampus. Expression of Plg-R(KT) fused in-frame to GFP resulted in targeting of the GFP signal to the cell membrane. Phase partitioning, co-immunoprecipitation with urokinase-type plasminogen activator receptor (uPAR), and FACS analysis with antibody directed against the C terminus of Plg-R(KT) were consistent with Plg-R(KT) being an integral plasma membrane protein on the surface of catecholaminergic cells. Cells stably overexpressing Plg-R(KT) exhibited substantial enhancement of plasminogen activation, and antibody blockade of non-transfected PC12 cells suppressed plasminogen activation. In functional secretion assays, nicotine-evoked [(3)H]norepinephrine release from cells overexpressing Plg-R(KT) was markedly decreased (by 51 ± 2%, p < 0.001) when compared with control transfected cells, and antibody blockade increased [(3)H]norepinephrine release from non-transfected PC12 cells. In summary, Plg-R(KT) is present on the surface of catecholaminergic cells and functions to stimulate plasminogen activation and modulate catecholamine release. Plg-R(KT) thus represents a new mechanism and novel control point for regulating the interface between plasminogen activation and neurosecretory cell function.  相似文献   

3.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

4.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 310-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.  相似文献   

5.
Fibrin (Fn) enhances plasminogen (Pg) activation by tissue-type plasminogen activator (tPA) by serving as a template onto which Pg and tPA assemble. To explore the contribution of the Pg/Fn interaction to Fn cofactor activity, Pg variants were generated and their affinities for Fn were determined using surface plasmon resonance (SPR). Glu-Pg, Lys-Pg (des(1-77)), and Mini-Pg (lacking kringles 1-4) bound Fn with K(d) values of 3.1, 0.21, and 24.5 μm, respectively, whereas Micro-Pg (lacking all kringles) did not bind. The kinetics of activation of the Pg variants by tPA were then examined in the absence or presence of Fn. Whereas Fn had no effect on Micro-Pg activation, the catalytic efficiencies of Glu-Pg, Lys-Pg, and Mini-Pg activation in the presence of Fn were 300- to 600-fold higher than in its absence. The retention of Fn cofactor activity with Mini-Pg, which has low affinity for Fn, suggests that Mini-Pg binds the tPA-Fn complex more tightly than tPA alone. To explore this possibility, SPR was used to examine the interaction of Mini-Pg with Fn in the absence or presence of tPA. There was 50% more Mini-Pg binding to Fn in the presence of tPA than in its absence, suggesting that formation of the tPA-Fn complex exposes a cryptic site that binds Mini-Pg. Thus, our data (a) indicate that high affinity binding of Pg to Fn is not essential for Fn cofactor activity, and (b) suggest that kringle 5 localizes and stabilizes Pg within the tPA-Fn complex and contributes to its efficient activation.  相似文献   

6.
Bacterial plasminogen (Pg) activators generate plasmin to degrade fibrin blood clots and other proteins that modulate the pathogenesis of infection, yet despite strong homology between mammalian Pgs, the activity of bacterial Pg activators is thought to be restricted to the Pg of their host mammalian species. Thus, we found that Streptococcus uberis Pg activator (SUPA), isolated from a Streptococcus species that infects cows but not humans, robustly activated bovine but not human Pg in purified systems and in plasma. Consistent with this, SUPA formed a higher avidity complex (118-fold) with bovine Pg than with human Pg and non-proteolytically activated bovine but not human Pg. Surprisingly, however, the presence of human fibrin overrides the species-restricted action of SUPA. First, human fibrin enhanced the binding avidity of SUPA for human Pg by 4-8-fold in the presence and absence of chloride ion (a negative regulator). Second, although SUPA did not protect plasmin from inactivation by α(2)-antiplasmin, fibrin did protect human plasmin, which formed a 31-fold higher avidity complex with SUPA than Pg. Third, fibrin significantly enhanced Pg activation by reducing the K(m) (4-fold) and improving the catalytic efficiency of the SUPA complex (6-fold). Taken together, these data suggest that indirect molecular interactions may override the species-restricted activity of bacterial Pg activators; this may affect the pathogenesis of infections or may be exploited to facilitate the design of new blood clot-dissolving drugs.  相似文献   

7.
Longstaff C  Thelwell C 《FEBS letters》2005,579(15):3303-3309
Cardiovascular disease is responsible for 17 million deaths per year but acute myocardial infarction and stroke can be treated with thrombolytics ("clot busters"), which are plasminogen activators. However, despite many years of study and huge investment from the pharmaceutical industry, clinical trials of new drugs have often been disappointing. Part of the problem may be our incomplete understanding of the regulation of plasminogen activation in vivo. We have developed precise in vitro methods and with the application of computer simulations, we hope to improve our understanding of plasminogen activation to facilitate improvements in thrombolytic therapy.  相似文献   

8.
The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18-36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates.  相似文献   

9.
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.  相似文献   

10.
Our previously hypothesized mechanism for the pathway of plasminogen (Pg) activation by streptokinase (SK) was tested by the use of full time course kinetics. Three discontinuous chromogenic substrate initial rate assays were developed with different quenching conditions that enabled quantitation of the time courses of Pg depletion, plasmin (Pm) formation, transient formation of the conformationally activated SK·Pg* catalytic complex intermediate, formation of the SK·Pm catalytic complex, and the free concentrations of Pg, Pm, and SK. Analysis of full time courses of Pg activation by five concentrations of SK along with activity-based titrations of SK·Pg* and SK·Pm formation yielded rate and dissociation constants within 2-fold of those determined previously by continuous measurement of parabolic chromogenic substrate hydrolysis and fluorescence-based equilibrium binding. The results obtained with orthogonal assays provide independent support for a mechanism in which the conformationally activated SK·Pg* complex catalyzes an initial cycle of Pg proteolytic conversion to Pm that acts as a trigger. Higher affinity binding of the formed Pm to SK outcompetes Pg binding, terminating the trigger cycle and initiating the bullet catalytic cycle by the SK·Pm complex that converts the residual Pg into Pm. The new assays can be adapted to quantitate SK-Pg activation in the context of SK- or Pg-directed inhibitors, effectors, and SK allelic variants. To support this, we show for the first time with an assay specific for SK·Pg* that fibrinogen forms a ternary SK·Pg*·fibrinogen complex, which assembles with 200-fold enhanced SK·Pg* affinity, signaled by a perturbation of the SK·Pg* active site.  相似文献   

11.
D Findik  P Presek 《FEBS letters》1988,230(1-2):51-56
Several specific inhibitors for plasminogen activators have been isolated from various organs and cell lines, those from human placenta and the human monocyte-like cell line U-937 being virtually identical. The reaction between this type of inhibitor, designated as type-2, and high-Mr and low-Mr urokinase-type plasminogen activators was followed by reversed-phase high-performance liquid chromatography and gel electrophoresis. The components, their stable complexes and their dissociation and cleavage products could be clearly identified in both systems. The amino acid sequence of the inhibitor at the cleavage site was determined to be -Met-Thr-Gly-Arg↓Thr-Gly-His-Gly-. A 35-residue carboxy-terminal fragment was found to be released.  相似文献   

12.
α(2)-Antiplasmin is the physiological inhibitor of plasmin and is unique in the serpin family due to N- and C-terminal extensions beyond its core domain. The C-terminal extension comprises 55 amino acids from Asn-410 to Lys-464, and the lysine residues (Lys-418, Lys-427, Lys-434, Lys-441, Lys-448, and Lys-464) within this region are important in mediating the initial interaction with kringle domains of plasmin. To understand the role of lysine residues within the C terminus of α(2)-antiplasmin, we systematically and sequentially mutated the C-terminal lysines, studied the effects on the rate of plasmin inhibition, and measured the binding affinity for plasmin via surface plasmon resonance. We determined that the C-terminal lysine (Lys-464) is individually most important in initiating binding to plasmin. Using two independent methods, we also showed that the conserved internal lysine residues play a major role mediating binding of the C terminus of α(2)-antiplasmin to kringle domains of plasmin and in accelerating the rate of interaction between α(2)-antiplasmin and plasmin. When the C terminus of α(2)-antiplasmin was removed, the binding affinity for active site-blocked plasmin remained high, suggesting additional exosite interactions between the serpin core and plasmin.  相似文献   

13.
PAI-1, the physiological inhibitor of tissue-type and urokinase-type plasminogen activator, is a unique member of the serpins as it exists in three distinct conformations: an active inhibitory conformation, a non-inhibitory substrate conformation, and a non-reactive latent conformation. Proline substitution of single residues in the P16-P20 region (situated at the proximal hinge of the reactive site loop) of wild-type PAI-1 (wtPAI-1) and a stabilized PAI-1-variant (PAI-1-stab; N150H, K154T, Q301P, Q319L, and M354I, t(1/2)=150), respectively, resulted in two series of PAI-1-variants with different properties. In wtPAI-1 only substitution at P18 resulted in a pronounced u-PA specificity and substrate behaviour towards t-PA. In contrast, in PAI-1-stab substitution at either P18, P19 or P20 resulted in a u-PA specificity and a significantly increased substrate behaviour towards t-PA and u-PA. Importantly, analysis of the kinetics of inhibition did not reveal any differences in the second-order rate constants of inhibition (k approximately 10(7)M(-1)s(-1)). The pronounced differences observed for identical mutations in wtPAI-1 vs PAI-1-stab demonstrate that not merely the sequence of the reactive loop but also intramolecular interactions between the hF/s3A-loop and the main part of the molecule govern the functional and conformational behaviour of PAI-1.  相似文献   

14.
Plasminogen preparation from donor blood and fibrinolytically active blood plasma from humans after sudden death were obtained using affinity chromatography on Lysin-sepharose 4B. The plasminogen preparation from donor blood was shown to be highly purified native plasminogen (Glu-plasminogen). The preparation containing activated plasminogen (Lys-plasminogen), plasmin, plasminogen activator, alpha 2-macroglobulin, alpha 1-antitrypsin, fibrin/fibrinogen was obtained from the blood plasma of humans after sudden death. The appearance of proteins lacking biological specificity to lysin-sepharose in the plasminogen preparation shows the ability of activated plasminogen and plasmin to form complexes with these proteins and demonstrates the retention of the functional activity in lysin-binding regions on their molecules. Monospecific sera to the isolated preparations were obtained, demonstrating the presence of the same immunochemical determinants in native and activated plasminogen.  相似文献   

15.
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.  相似文献   

16.
Neutrophil extracellular traps are networks of DNA and associated proteins produced by nucleosome release from activated neutrophils in response to infection stimuli and have recently been identified as key mediators between innate immunity, inflammation, and hemostasis. The interaction of DNA and histones with a number of hemostatic factors has been shown to promote clotting and is associated with increased thrombosis, but little is known about the effects of DNA and histones on the regulation of fibrin stability and fibrinolysis. Here we demonstrate that the addition of histone-DNA complexes to fibrin results in thicker fibers (increase in median diameter from 84 to 123 nm according to scanning electron microscopy data) accompanied by improved stability and rigidity (the critical shear stress causing loss of fibrin viscosity increases from 150 to 376 Pa whereas the storage modulus of the gel increases from 62 to 82 pascals according to oscillation rheometric data). The effects of DNA and histones alone are subtle and suggest that histones affect clot structure whereas DNA changes the way clots are lysed. The combination of histones + DNA significantly prolongs clot lysis. Isothermal titration and confocal microscopy studies suggest that histones and DNA bind large fibrin degradation products with 191 and 136 nm dissociation constants, respectively, interactions that inhibit clot lysis. Heparin, which is known to interfere with the formation of neutrophil extracellular traps, appears to prolong lysis time at a concentration favoring ternary histone-DNA-heparin complex formation, and DNase effectively promotes clot lysis in combination with tissue plasminogen activator.  相似文献   

17.
18.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

19.
Certain denatured proteins function as cofactors in the activation of plasminogen by tissue-type plasminogen activator. The present study approached the structural requirements for the cofactor activity of a model protein (human serum albumin). Heat denaturation of 100-230 microM albumin (80 degrees C and 60-90 min) reproducibly yielded aggregates with radius in the range of 10-150 nm. The major determinant of the cofactor potency was the size of the aggregates. The increase of particle size correlated with the cofactor activity, and there was a minimal requirement for the size of the cofactor (about 10 nm radius). Similar to other proteins, the molecular aggregates with cofactor function contained a significant amount of antiparallel intermolecular beta-sheets. Plasmin pre-digestion increased the cofactor efficiency (related to C-terminal lysine exposure) and did not affect profoundly the structure of the aggregates, suggesting a long-lasting and even a self-augmenting cofactor function of the denatured protein.  相似文献   

20.
The activation of plasminogen at the cell surface is a crucial step in cell migration and invasion. In the present study, the effect of membrane-bound melanotransferrin (mMTf), also known as human melanoma antigen p97, on cell surface plasminogen binding and activation was investigated by using Chinese Hamster Ovary (CHO) cells transfected with full-length melanotransferrin (MTf) cDNA and SK-MeL-28 melanoma cells. The expression of mMTf in CHO increased cell surface plasminogen binding by about 2-fold. In addition, application of the monoclonal antibody L235 against MTf as well as truncated, soluble MTf (sMTf) abolished plasminogen binding to MTf-transfected and SK-MeL-28 cells, indicating that mMTf is a potential cell surface plasminogen receptor. Moreover, mMTf expression in CHO cells stimulates plasminogen activation at the cell surface by about 2.5-fold. In addition to the induced binding and activation of plasminogen, cell motility, migration and invasion were about 3-fold higher in CHO cells expressing mMTf. Both monoclonal antibody L235 and truncated sMTf inhibited mMTf-stimulated CHO cell motility, migration and invasion. Overall, our results indicate a key role for mMTf in cell surface plasminogen binding and in activation processes involved during cell migration and invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号