首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The algR2 (also known as algQ) gene of Pseudomonas aeruginosa has previously been identified as being necessary for alginate production at 37°C. We have cloned two genes, from a cosmid library of Escherichia coli, which can restore mucoidy to an algR2 mutant of P. aeruginosa. The complementing regions of both cosmids were localized by subcloning restriction fragments. One of the E. coli genes identified here has not previously been described; we have named this gene rnk (regulator of nucleoside diphosphate kinase). It encodes a 14.9 kDa protein with no homo-logy to any other protein. The other gene, sspA, is a regulator involved in stationary-phase regulation in E. coli. Either gene will restore mucoidy to an algR2-deficient strain of P. aeruginosa. AlgR2 has been shown to regulate at least two enzymes, succinyl-CoA synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa. When we examined the ability of the E. coli analogues to regulate Ndk, we found that rnk but not sspA was able to restore Ndk activity to the P. aeruginosa algR2 mutant. Furthermore, rnk was able to restore growth of the algR2 mutant in the presence of Tween 20, which inhibits other Ndk-like activities.  相似文献   

3.
4.
5.
6.
7.
8.
The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in the mucA gene was found to cause repression of T3SS expression under both type III-inducing and -noninducing conditions. Mutation in the mucA gene is known to cause alginate overproduction, resulting in a mucoid phenotype. Alginate production responds to various environmental stresses and plays a protective role for P. aeruginosa. Comparison of global gene expression of mucA mutant and wild-type PAK under T3SS-inducing conditions confirmed the down regulation of T3SS genes and up regulation of genes involved in alginate biosynthesis. Further analysis indicated that the repression of T3SS in the mucA mutant was AlgU and AlgR dependent, as double mutants mucA/algU and mucA/algR showed normal type III expression. An algR::Gm mutant showed a higher level of type III expression, while overexpression of the algR gene inhibited type III gene expression; thus, it seems that the AlgR-regulated product inhibits the expression of the T3SS genes. It is likely that P. aeruginosa has evolved tight regulatory networks to turn off the energy-expensive T3SS when striving for survival under environmental stresses.  相似文献   

9.
Mutants of Pseudomonas aeruginosa were isolated that were acetamide-negative in growth phenotype at 41 degrees C and constitutive for amidase synthesis at 28 degrees C. Two mutants were derived from the magno-constitutive amidase mutant PAC111 (C11), and a third from a mutant that had enhanced inducibility by formamide, PAC153 (F6). The three temperature-sensitive mutants produced amidases with the same thermal stabilities as the wild-type enzyme. Cultures growing exponentially at 28 degrees C, synthesizing amidase constitutively, ceased amidase synthesis almost immediately on transfer to 41 degrees C. Cultures growing at 41 degrees C were transferred to 28 degrees C and had a lag of about 0.5 of a generation before amidase synthesis became detectable. Pulse-heating for 10 min at 45 degrees C of a culture growing exponentially at 28 degrees C resulted in a lag of about 0.5 of a generation before amidase synthesis recommenced after returning to 28 degrees C. Acetamide-negative mutants that were unable to synthesize amidase at any growth temperature were isolated from an inducible strain producing the mutant B amidase PAC398 (IB10). Two mutants were examined that gave revertants producing B amidase but with novel regulatory phenotypes. It is suggested that amidase synthesis is regulated by positive control exerted by gene amiR.  相似文献   

10.
11.
12.
13.
We report the cloning and determination of the nucleotide sequence of the gene encoding nucleoside diphosphate kinase (Ndk) from Pseudomonas aeruginosa. The amino acid sequence of Ndk was highly homologous with other known bacterial and eukaryotic Ndks (39.9 to 58.3% amino acid identity). We have previously reported that P. aeruginosa strains with mutations in the genes algR2 and algR2 algH produce extremely low levels of Ndk and, as a consequence, are defective in their ability to grow in the presence of Tween 20, a detergent that inhibits a kinase which can substitute for Ndk. Hyperexpression of ndk from the clone pGWS95 in trans in the P. aeruginosa algR2an6 algR2 algH double mutant restored Ndk production to levels which equalled or exceeded wild-type levels and enabled these strains to grow in the presence of Tween 20. Hyperexpression of ndk from pGWS95 in the P. aeruginosa algR2 mutant also restored alginate production to levels that were approximately 60% of wild type. Nucleoside diphosphate kinase activity was present in both the cytosolic and membrane-associated fractions of P. aeruginosa. The cytosolic Ndk was non-specific in its transfer activity of the terminal phosphate from ATP to other nucleoside diphosphates. However, the membrane form of Ndk was more active in the transfer of the terminal phosphate from ATP to GDP resulting in the predominant formation of GTP. We report in this work that pyruvate kinase and Ndk form a complex which alters the specificity of Ndk substantially to GTP. The significance of GTP in signal transduction  相似文献   

14.
Alginate-producing Pseudomonas aeruginosa 8821 spontaneously produced low- and high-alginate-producing variants that had low and high specific activities of GDP-mannose dehydrogenase and high and low specific growth rates, respectively. The optimal temperature for alginate production was 10°C below that for growth in the case of the high-producer but they were the same for the low-producer. In short duration thermal death experiments, alginate protected cells against lethal temperatures, although the maximal temperature for growth of the mucoid variants (43°C) was lower than that for the non-mucoid strain (44°C). The temperature profiles were associative and above 37°C growth concurred with thermal death.  相似文献   

15.
16.
17.
Previous studies localized an alginate lyase gene (algL) within the alginate biosynthetic gene cluster at 34 min on the Pseudomonas aeruginosa chromosome. Insertion of a Tn501 polar transposon in a gene (algX) directly upstream of algL in mucoid P. aeruginosa FRD1 inactivated expression of algX, algL, and other downstream genes, including algA. This strain is phenotypically nonmucoid; however, alginate production could be restored by complementation in trans with a plasmid carrying all of the genes inactivated by the insertion, including algL and algX. Alginate production was also recovered when a merodiploid that generated a complete alginate gene cluster on the chromosome was constructed. However, alginate production by merodiploids formed in the algX::Tn501 mutant using an alginate cluster with an algL deletion was not restored to wild-type levels unless algL was provided on a plasmid in trans. In addition, complementation studies of Tn501 mutants using plasmids containing specific deletions in either algL or algX revealed that both genes were required to restore the mucoid phenotype. Escherichia coli strains which expressed algX produced a unique protein of approximately 53 kDa, consistent with the gene product predicted from the DNA sequencing data. These studies demonstrate that AlgX, whose biochemical function remains to be defined, and AlgL, which has alginate lyase activity, are both involved in alginate production by P. aeruginosa.  相似文献   

18.
Reporter gene technology was employed to detect the activity of an alginate promoter of Pseudomonas aeruginosa when the organism was grown as a biofilm on a Teflon mesh substratum and as planktonic cells in liquid medium. Alginate biosynthetic activity was determined with a mucoid cell line derived from a cystic fibrosis isolate and containing an alginate algC promoter fused to a lacZ reporter gene. Reporter activity was demonstrated with chromogenic and fluorogenic substrates for beta-galactosidase. Expression of algC was shown to be upregulated in biofilm cells compared with planktonic cells in liquid medium. Gene up-expression correlated with alginate biosynthesis as measured by Fourier transform infrared spectroscopy, uronic acid accumulation, and alginate-specific enzyme-linked immunosorbent assay. The algC promoter was shown to have maximum activity in planktonic cultures during the late lag and early log phases of the cell growth cycle. During a time course experiment, biofilm algC activity exceeded planktonic activity except during the period immediately following inoculation into fresh medium. In continuous-culture experiments, conversion of lacZ substrate was demonstrated microscopically in individual cells by epifluorescence microscopy.  相似文献   

19.
20.
Mucoid strains of Pseudomonas aeruginosa produce a high-molecular-weight exopolysaccharide called alginate that is modified by the addition of O-acetyl groups. To better understand the acetylation process, a gene involved in alginate acetylation called algF was identified in this study. We hypothesized that a gene involved in alginate acetylation would be located within the alginate biosynthetic gene cluster at 34 min on the P. aeruginosa chromosome. To isolate algF mutants, a procedure for localized mutagenesis was developed to introduce random chemical mutations into the P. aeruginosa alginate biosynthetic operon on the chromosome. For this, a DNA fragment containing the alginate biosynthetic operon and adjacent argF gene in a gene replacement cosmid vector was utilized. The plasmid was packaged in vivo into lambda phage particles, mutagenized in vitro with hydroxylamine, transduced into Escherichia coli, and mobilized to an argF auxotroph of P. aeruginosa FRD. Arg+ recombinants coinherited the mutagenized alginate gene cluster and were screened for defects in alginate acetylation by testing for increased sensitivity to an alginate lyase produced by Klebsiella aerogenes. Alginates from recombinants which showed increased sensitivity to alginate lyase were tested for acetylation by a colorimetric assay and infrared spectroscopy. Two algF mutants that produced alginates reduced more than sixfold in acetyl groups were obtained. The acetylation defect was complemented in trans by a 3.8-kb XbaI-BamHI fragment from the alginate gene cluster when placed in the correct orientation under a trc promoter. By a merodiploid analysis, the algF gene was further mapped to a region directly upstream of algA by examining the polar effect of Tn501 insertions. By gene replacement, DNA with a Tn501 insertion directly upstream of algA was recombined with the chromosome of mucoid strain FRD1. The resulting strain, FRD1003, was nonmucoid because of the polar effect of the transposon on the downstream algA gene. By providing algA in trans under the tac promoter, FRD1003 produced nonacetylated alginate, indicating that the transposon was within or just upstream of algF. These results demonstrated that algF, a gene involved in alginate acetylation, is located directly upstream of algA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号