首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background

Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or metastatic disease. The presence of tumor infiltrating lymphocytes (TILs) as well as progesterone receptor (PR) positivity has been correlated with improved prognosis. This study describes two mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT).

Methodology and Principal Findings

Paraffin sections from patients with (n = 9) or without (n = 9) progressive endometrial cancer (recurrent or metastatic disease) were assessed for the presence of CD4+ (helper), CD8+ (cytotoxic) and Foxp3+ (regulatory) T-lymphocytes and PR expression. Progressive disease was observed to be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used for genome-wide expression analysis, showed significant regulation of pathways involved in immunesurveillance, EMT and metastasis. For a number of genes, such as CXCL14, DKK1, DKK4, PEG10 and WIF1, quantitive RT-PCR was performed to verify up- or downregulation in progressive disease. To corroborate the role of progesterone in regulating invasion, Ishikawa(IK) endometrial cancer cell lines stably transfected with PRA (IKPRA), PRB(IKPRB) and PRA+PRB (IKPRAB) were cultured in presence/absence of progesterone (MPA) and used for genome-wide expression analysis, Boyden- and wound healing migration assays, and IHC for known EMT markers. IKPRB and IKPRAB cell lines showed MPA induced inhibition of migration and loss of the mesenchymal marker vimentin at the invasive front of the wound healing assay. Furthermore, pathway analysis of significantly MPA regulated genes showed significant down regulation of important pathways involved in EMT, immunesuppression and metastasis: such as IL6-, TGF-β and Wnt/β-catenin signaling.

Conclusion

Intact progesterone signaling in non-progressive endometrial cancer seems to be an important factor stimulating immunosurveilance and inhibiting transition from an epithelial to a more mesenchymal, more invasive phenotype.  相似文献   

2.
3.
Scutellarin, an active component of flavonoid, displays a variety of physiological actions and has been applied for the treatment of diverse diseases including hypertension and cerebral infarction as well as cerebral thrombosis. In recent time, Scutellarin has been demonstrated to possess the anticancer activity. But the biological significance of Scutellarin in bladder cancer (BC) remains to be elucidated. In the current study, we explored the specific effect of Scutellarin on BC progression. We found that Scutellarin inhibited hypoxia-induced BC cell migration and invasion in vitro as well as suppressed hypoxia-induced BC metastasis in vivo. Moreover, Scutellarin significantly reversed hypoxia-promoted epithelial-mesenchymal transition (EMT) in BC cells and the PI3K/Akt and MAPK pathways were implicated in the suppressive effect. Taken together, we suggested the potential value of Scutellarin as a novel anticancer agent for BC treatment.  相似文献   

4.
Bladder cancer remains a leading cause of cancer-related death because of its distant metastasis and high recurrence rates. Deregulation of circular RNAs (circRNAs) can act either as tumor suppressors or oncogenes to control cell proliferation, migration, and metastasis. The role of circMTO1 in bladder cancer remain unknown. In this study, we investigated whether circMTO1 could use as a biomarker and therapeutic target for bladder cancer treatment. We first demonstrated that circMTO1 was an important circRNA frequently downregulated in bladder cancer tissue, and lower circMTO1 levels were positively correlated with bladder cancer patients' metastasis and poorer survival. Ectopic expression of circMTO1 in bladder cancer cells inhibited cell's epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, we also revealed that circMTO1 was able to sponge miR-221 and overexpression of circMTO1 negatively regulated the E-cadherin/N-cadherin pathway to inhibit bladder cancer cells' EMT by competing for miR-221. In conclusion, our findings provide comprehensive evidences that circMTO1 is a prognostic biomarker in bladder cancer and suggest that circMTO1 may function as a novel therapeutic target in human bladder cancer.  相似文献   

5.
Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.  相似文献   

6.
7.
8.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. RI is constructed almost entirely of leucine rich repeats, which might be involved in unknown biological effects except inhibiting RNase A and angiogenin activities. We previously reported that up-regulating RI inhibited the growth and metastasis of melanoma cells. Epithelial-mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. However, the role of RI in the EMT process remains unknown. Here we hypothesize that RI might inhibit melanoma invasion and metastasis by regulating EMT. We found that over-expression of RI induced up-regulation of E-cadherin, accompanied with decreased expressions of proteins associated with EMT such as N-cadherin, Snail, Slug, Vimentin and Twist both in vitro and in vivo. Furthermore, RI restrained matrix metalloproteinase MMP-2 and MMP-9 secretions in B16 and B16-F10 melanoma cells. In addition, we also found that up-regulation of RI inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. Finally, the effects of RI on phenotype and invasiveness translated into suppressing metastasis by the experimental metastasis models of melanoma with lighter lung weight, a fewer metastasis nodules and a lower incidence rate, with respect to the control groups. Taken together, our data highlight, for the first time, that RI plays a novel role in inhibiting development and progression of murine melanoma cells through regulating EMT. These results suggest that RI could be a therapeutic target protein for melanoma and may be of biological importance.  相似文献   

9.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

10.
11.
12.
The epithelial-to-mesenchymal transition (EMT), a process involving the breakdown of cell–cell junctions and loss of epithelial polarity, is closely related to cancer development and metastatic progression. While the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl? and HCO3? conducting anion channel expressed in a wide variety of epithelial cells, has been implicated in the regulation of epithelial polarity, the exact role of CFTR in the pathogenesis of cancer and its possible involvement in EMT process have not been elucidated. Here we report that interfering with CFTR function either by its specific inhibitor or lentiviral miRNA-mediated knockdown mimics TGF-β1-induced EMT and enhances cell migration and invasion in MCF-7. Ectopic overexpression of CFTR in a highly metastatic MDA-231 breast cancer cell line downregulates EMT markers and suppresses cell invasion and migration in vitro, as well as metastasis in vivo. The EMT-suppressing effect of CFTR is found to be associated with its ability to inhibit NFκB targeting urokinase-type plasminogen activator (uPA), known to be involved in the regulation of EMT. More importantly, CFTR expression is found significantly downregulated in primary human breast cancer samples, and is closely associated with poor prognosis in different cohorts of breast cancer patients. Taken together, the present study has demonstrated a previously undefined role of CFTR as an EMT suppressor and its potential as a prognostic indicator in breast cancer.  相似文献   

13.
Integrin-linked kinase (ILK), an intracellular serine/threonine kinase, is implicated in cell growth and survival, cell-cycle progression, tumor angiogenesis, and cell apoptosis. Recent studies showed that the expression and activity of ILK increased significantly in many types of solid tumors. However, the exact molecular mechanism of ILK underlie tumor has not been fully ascertained. The purpose of our study was to determine whether knockdown of ILK would inhibit cell growth and induce apoptosis in bladder cancer cells using a plasmid vector based small interfering RNA (siRNA). The experiments showed that knockdown of ILK could remarkably inhibit cell proliferation and growth, regulate cell cycle and induce apoptosis of bladder cancer BIU-87 and EJ cells. We demonstrated that knockdown of ILK inhibited phosphorylation of downstream signaling targets protein kinase B/Akt, glycogen synthase kinase 3-beta (GSK-3β), and reduced expression of β-catenin in BIU-87 as well as EJ cells by Western blot and Immunofluorescence analysis. In addition, down-regulation of ILK also could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. BALB/C nude mice injected with the BIU-87 cells transfected ILK siRNA showed a significant inhibition of the tumor growth with lighter tumor weight, lower microvessels density and higher apoptosis rate than those in the other two control groups. In conclusion, these results suggest that ILK might be involved in the development of bladder cancer, and could be served as a novel potential therapy target for human bladder cancer. Our study may be of biological and clinical importance.  相似文献   

14.
15.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein possibly involved in biological functions other than the inhibition of RNase A and angiogenin activities. We have previously shown that RI can inhibit growth and metastasis in some cancer cells. Epithelial-mesenchymal transition (EMT) is regarded as the beginning of invasion and metastasis and has been implicated in the metastasis of bladder cancer. We therefore postulate that RI regulates EMT of bladder cancer cells. We find that the over-expression of RI induces the up-regulation of E-cadherin, accompanied with the decreased expression of proteins associated with EMT, such as N-cadherin, Snail, Slug, vimentin and Twist and of matrix metalloprotein-2 (MMP-2), MMP-9 and Cyclin-D1, both in vitro and in vivo. The up-regulation of RI inhibits cell proliferation, migration and invasion, alters cell morphology and adhesion and leads to the rearrangement of the cytoskeleton in vitro. We also demonstrate that the up-regulation of RI can decrease the expression of integrin-linked kinase (ILK), a central component of signaling cascades controlling an array of biological processes. The over-expression of RI reduces the phosphorylation of the ILK downstream signaling targets p-Akt and p-GSK3β in T24 cells. We further find that bladder cancer with a high-metastasis capability shows higher vimentin, Snail, Slug and Twist and lower E-cadherin and RI expression in human clinical specimens. Finally, we provide evidence that the up-regulation of RI inhibits tumorigenesis and metastasis of bladder cancer in vivo. Thus, RI might play a novel role in the development of bladder cancer through regulating EMT and the ILK signaling pathway.  相似文献   

16.
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.  相似文献   

17.
Ying L  Chen Q  Wang Y  Zhou Z  Huang Y  Qiu F 《Molecular bioSystems》2012,8(9):2289-2294
Recent studies reveal that long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in cancer biology, and lncRNA MALAT-1 expression is upregulated in some tumors. However, the contributions of MALAT-1 to bladder cancer metastasis remain largely unknown. In the present study we evaluated MALAT-1 expression in bladder cancer tissues by real-time PCR, and defined its biological functions. We verified that MALAT-1 levels were upregulated in bladder cancer tissues compared with adjacent normal tissues, and MALAT-1 expression was remarkably increased in primary tumors that subsequently metastasized, when compared to those primary tumors that did not metastasize. SiRNA-mediated MALAT-1 silencing impaired in vitro bladder cancer cell migration. Downregulation of MALAT-1 resulted in a decrease of the epithelial-mesenchymal transition (EMT)-associated ZEB1, ZEB2 and Slug levels, and an increase of E-cadherin levels. We further demonstrated that MALAT-1 promoted EMT by activating Wnt signaling in vitro. These data suggest an important role for MALAT-1 in regulating metastasis of bladder cancer and the potential application of MALAT-1 in bladder cancer therapy.  相似文献   

18.
Breast cancers are highly heterogeneous and successful treatment of those subtypes with a high frequency of metastases and resistance to clinically available therapies remains a challenge. An understanding of mechanisms which may contribute to this heterogeneity and generation of more resilient cancer cells is therefore essential. Epithelial-to-mesenchymal transition (EMT) is a dynamic two-way process that occurs during embryonic development and wound healing whereby epithelial cells can gain plasticity and switch to a mesenchymal-like phenotype. EMT has received interest from cancer researchers due to its potential role in processes important in cancer progression and metastasis. Recent evidence has revealed a clear association between EMT and resistance to therapeutics. Targeting of EMT and/or the mesenchymal-like phenotype may be a promising avenue for future therapeutic intervention. This review provides a brief summary of the functional consequences of EMT in breast cancer, with a focus on the mesenchymal-like phenotype.  相似文献   

19.
Every year about 500,000 people in the United States die as a result of cancer. Among them, 90% exhibit systemic disease with metastasis. Considering this high rate of incidence and mortality, it is critical to understand the mechanisms behind metastasis and identify new targets for therapy. In recent years, two broad mechanisms for metastasis have received significant attention: epithelial-to-mesenchymal transition (EMT) and tumor microenvironment interactions. EMT is believed to be a major mechanism by which cancer cells become migratory and invasive. Various cancer cells--both in vivo and in vitro--demonstrate features of epithelial-to-mesenchymal-like transition. In addition, many steps of metastasis are influenced by host contributions from the tumor microenvironment, which help determine the course and severity of metastasis. Here we evaluate the diverse mechanisms of EMT and tumor microenvironment interactions in the progression of cancer, and construct a rational argument for targeting these pathways to control metastasis.  相似文献   

20.
LIV-1, a zinc transporter, is an effector molecule downstream from soluble growth factors. This protein has been shown to promote epithelial-to-mesenchymal transition (EMT) in human pancreatic, breast, and prostate cancer cells. Despite the implication of LIV-1 in cancer growth and metastasis, there has been no study to determine the role of LIV-1 in prostate cancer progression. Moreover, there was no clear delineation of the molecular mechanism underlying LIV-1 function in cancer cells. In the present communication, we found increased LIV-1 expression in benign, PIN, primary and bone metastatic human prostate cancer. We characterized the mechanism by which LIV-1 drives human prostate cancer EMT in an androgen-refractory prostate cancer cells (ARCaP) prostate cancer bone metastasis model. LIV-1, when overexpressed in ARCaP(E) (derivative cells of ARCaP with epithelial phenotype) cells, promoted EMT irreversibly. LIV-1 overexpressed ARCaP(E) cells had elevated levels of HB-EGF and matrix metalloproteinase (MMP) 2 and MMP 9 proteolytic enzyme activities, without affecting intracellular zinc concentration. The activation of MMPs resulted in the shedding of heparin binding-epidermal growth factor (HB-EGF) from ARCaP(E) cells that elicited constitutive epidermal growth factor receptor (EGFR) phosphorylation and its downstream extracellular signal regulated kinase (ERK) signaling. These results suggest that LIV-1 is involved in prostate cancer progression as an intracellular target of growth factor receptor signaling which promoted EMT and cancer metastasis. LIV-1 could be an attractive therapeutic target for the eradication of pre-existing human prostate cancer and bone and soft tissue metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号