首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   

3.
Frataxin (FXN) is a mitochondrial protein involved in iron metabolism and in the modulation of reactive oxygen and/or nitrogen species production. No information is currently available as for the role of frataxin in isolated human pancreatic islets. We studied islets from pancreases of multi-organ donors with (T2DM) and without (Ctrl) Type 2 diabetes mellitus. In these islets, we determined FXN gene and protein expression by qualitative and quantitative Real-Time RT-PCR, nitrotyrosine concentration, and insulin release in response to glucose stimulation (SI). FXN gene and protein were expressed in human islets, though the level of expression was much lower in T2DM islets. The latter also had lower insulin release and higher concentration of nitrotyrosine. A positive correlation was apparent between SI and FXN gene expression, while a negative correlation was found between nitrotyrosine islet concentration and FXN expression. Transfection of Ctrl islets with siRNA FXN caused reduction of FXN expression, increase of nitrotyrosine concentration, and reduction of insulin release. In conclusion, in human pancreatic islets FXN contributes to regulation of oxidative stress and insulin release in response to glucose. In islets from T2DM patients FXN expression is reduced while oxidative stress is increased and insulin release in response to glucose impaired.  相似文献   

4.
5.
Recent studies in mouse, involving the β-cell-specific deletion of Dicer1, have highlighted the crucial role of miRNAs (microRNAs) in regulating insulin secretion and consequently Type 2 diabetes. Identifying the individual miRNAs involved in human islet dysfunction may be of diagnostic and therapeutic interest. miRNA expression profiling of human islets isolated from donors with and without Type 2 diabetes may represent one of the first steps in the discovery of these specific miRNAs. The present review discusses some of the potential pitfalls and promises of such an approach.  相似文献   

6.
7.

Background

The Goto-Kakizaki (GK) rat is a well-studied non-obese spontaneous type 2 diabetes (T2D) animal model characterized by impaired glucose-stimulated insulin secretion (GSIS) in the pancreatic beta cells. MicroRNAs (miRNAs) are short regulatory RNAs involved in many fundamental biological processes. We aim to identify miRNAs that are differentially-expressed in the pancreatic islets of the GK rats and investigate both their short- and long term glucose-dependence during glucose-stimulatory conditions.

Methodology/Principal Findings

Global profiling of 348 miRNAs in the islets of GK rats and Wistar controls (females, 60 days, N = 6 for both sets) using locked nucleic acid (LNA)-based microarrays allowed for the clear separation of the two groups. Significant analysis of microarrays (SAM) identified 30 differentially-expressed miRNAs, 24 of which are predominantly upregulated in the GK rat islets. Monitoring of qPCR-validated miRNAs during GSIS experiments on isolated islets showed disparate expression trajectories between GK and controls indicating distinct short- and long-term glucose dependence. We specifically found expression of rno-miR-130a, rno-miR-132, rno-miR-212 and rno-miR-335 to be regulated by hyperglycaemia. The putative targets of upregulated miRNAs in the GK, filtered with glucose-regulated mRNAs, were found to be enriched for insulin-secretion genes known to be downregulated in T2D patients. Finally, the binding of rno-miR-335 to a fragment of the 3′UTR of one of known down-regulated exocytotic genes in GK islets, Stxbp1 was shown by luciferase assay.

Conclusions/Significance

The perturbed miRNA network found in the GK rat islets is indicative of a system-wide impairment in the regulation of genes important for the normal functions of pancreatic islets, particularly in processes involving insulin secretion during glucose stimulatory conditions. Our findings suggest that the reduced insulin secretion observed in the GK rat may be partly due to upregulated miRNA expression leading to decreased production of key proteins of the insulin exocytotic machinery.  相似文献   

8.
Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but the gene regulatory programs driving responses to glucocorticoid signaling in islets and the contribution of these programs to diabetes risk are unknown. In this study we used ATAC-seq and RNA-seq to map chromatin accessibility and gene expression from eleven primary human islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple doses and durations. We identified thousands of accessible chromatin sites and genes with significant changes in activity in response to glucocorticoids. Chromatin sites up-regulated in glucocorticoid signaling were prominently enriched for glucocorticoid receptor binding sites and up-regulated genes were enriched for ion transport and lipid metabolism, whereas down-regulated chromatin sites and genes were enriched for inflammatory, stress response and proliferative processes. Genetic variants associated with glucose levels and T2D risk were enriched in glucocorticoid-responsive chromatin sites, including fine-mapped variants at 51 known signals. Among fine-mapped variants in glucocorticoid-responsive chromatin, a likely casual variant at the 2p21 locus had glucocorticoid-dependent allelic effects on beta cell enhancer activity and affected SIX2 and SIX3 expression. Our results provide a comprehensive map of islet regulatory programs in response to glucocorticoids through which we uncover a role for islet glucocorticoid signaling in mediating genetic risk of T2D.  相似文献   

9.
Gas chromatography-mass spectrometry was used to measure the oxidative DNA damage in diabetic subjects and controls. Levels of multiple DNA base oxidation products, but not DNA base de-amination or chlorination products, were found to be elevated in white blood cell DNA from patients with type II diabetes as compared with age-matched controls. The chemical pattern of base damage is characteristic of that caused by an attack on DNA by hydroxyl radical. An increased formation of the highly reactive hydroxyl radical could account for many of the reports of oxidative stress in diabetic subjects. There was no evidence of an increased DNA damage by reactive nitrogen or chlorine species.  相似文献   

10.
Increased monocyte recruitment into subendothelial space in atherosclerotic lesions is one of the hallmarks of diabetic angiopathy. The aim of this study was to determine the state of peripheral blood monocytes in diabetes associated with atherosclerosis. Diabetic patients treated with/without an oral hypoglycemic agent and/or insulin for at least 1 year were recruited (n=106). We also included 24 non-diabetic control subjects. We measured serum levels of monocyte chemoattractant protein (MCP)-1, fasting plasma glucose (FPG), HbA1c, total cholesterol, triglyceride, body mass index (BMI), high sensitivity CRP (hs-CRP) and evaluated CCR2, CD36, CD68 expression on the surface of monocytes. Serum MCP-1 levels were significantly (p<0.05) higher in diabetic patients than in normal subjects. In diabetic patients, serum MCP-1 levels correlated significantly with FPG, HbA1c, triglyceride, BMI, and hs-CRP. The expression levels of CCR2, CD36, and CD68 on monocytes were significantly increased in diabetic patients and were more upregulated by MCP-1 stimulation. Our data suggest that elevated serum MCP-1 levels and increased monocyte CCR2, CD36, CD68 expression correlate with poor blood glucose control and potentially contribute to increased recruitment of monocytes to the vessel wall in diabetes mellitus.  相似文献   

11.
12.
2 型糖尿病(Type 2 diabetes mellitus, T2DM)是由于遗传与环境因素共同作用而引起葡萄糖代谢紊乱的疾病。DNA甲基化修饰的研究发现环境因素可以通过影响DNA甲基化修饰, 显著地增加T2DM的患病风险。目前, T2DM环境相关基因的DNA甲基化修饰研究已在人及动物的不同组织中取得进展。此外, T2DM相关基因的甲基化研究主要集中在糖代谢、能量代谢、炎症等。文章系统地综述了目前T2DM致病环境因素与DNA甲基化研究进展。  相似文献   

13.

Objective

To test the hypothesis that clinical observations made at patient presentation can distinguish type 2 diabetes (T2D) from type 1 diabetes (T1D) in pediatric patients aged 2 to 18.

Subjects and Methods

Medical records of 227 African American and 112 Hispanic American pediatric patients diagnosed as T1D or T2D were examined to compare parameters in the two diseases. Age at presentation, BMI z-score, and gender were the variables used in logistic regression analysis to create models for T2D prediction.

Results

The regression-based model created from African American data had a sensitivity of 92% and a specificity of 89%; testing of a replication cohort showed 91% sensitivity and 93% specificity. A model based on the Hispanic American data showed 92% sensitivity and 90% specificity. Similarities between African American and Hispanic American patients include: (1) age at onset for both T1D and T2D decreased from the 1980s to the 2000s; (2) risk of T2D increased markedly with obesity. Racial/ethnic-specific observations included: (1) in African American patients, the proportion of females was significantly higher than that of males for T2D compared to T1D (p<0.0001); (2) in Hispanic Americans, the level of glycated hemoglobin (HbA1c) was significantly higher in T1D than in T2D (p<0.002) at presentation; (3) the strongest contributor to T2D risk was female gender in African Americans, while the strongest contributor to T2D risk was BMI z-score in Hispanic Americans.

Conclusions

Distinction of T2D from T1D at patient presentation was possible with good sensitivity and specificity using only three easily-assessed variables: age, gender, and BMI z-score. In African American pediatric diabetes patients, gender was the strongest predictor of T2D, while in Hispanic patients, BMI z-score was the strongest predictor. This suggests that race/ethnic specific models may be useful to optimize distinction of T1D from T2D at presentation.  相似文献   

14.
Low protein diet has been shown to affect the levels and activities of several enzymes from pancreatic islets. To further extend the knowledge on how malnutrition affects insulin secretion pathway, we investigated in this work the insulin release induced by glucose or leucine, an insulin secretagogue, and the expression of insulin receptor (IR), insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K), and p70S6K1 (S6K-1) proteins from pancreatic islets of rats fed a normal (17%; NP) or a low (6%; LP) protein diet for 8 weeks. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 16.7 mmol/L of glucose, or 2.8 mmol/L of glucose in the presence or absence of 20 mmol/L of leucine. Glucose- and leucine-induced insulin secretions were higher in NP than in LP islets. Western blotting analysis showed an increase in the expression of IR and PI3K protein levels whereas IRS1 and S6K-1 protein expression were lower in LP compared to NP islets. In addition, S6K-1 mRNA expression was also reduced in islets from LP rats. Our data indicate that a low protein diet modulates the levels of several proteins involved in the insulin secretion pathway. Particularly, the decrease in S6K-1 expression might be an important factor affecting either glucose- or leucine-induced insulin secretion.  相似文献   

15.
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH +) or without (FH ?) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH + myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH + myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH + myotubes. Surprisingly, mtDNA content was higher in FH + myotubes. Oxidative stress level was not different between FH + and FH ? groups. Reactive oxygen species content was lower in FH + myotubes when differentiated in high glucose/insulin (25 mM/150 pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH + myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.  相似文献   

16.
Pancreatic adenocarcinoma (PaC) is one of most difficult tumors to treat. Much of this is attributed to the late diagnosis. To identify biomarkers for early detection, we examined DNA methylation differences in leukocyte DNA between PaC cases and controls in a two-phase study. In phase I, we measured methylation levels at 1,505 CpG sites in treatment-naïve leukocyte DNA from 132 never-smoker PaC patients and 60 never-smoker healthy controls. We found significant differences in 110 CpG sites (false discovery rate <0.05). In phase II, we tested and validated 88 of 96 phase I selected CpG sites in 240 PaC cases and 240 matched controls (p≤0.05). Using penalized logistic regression, we built a prediction model consisting of five CpG sites (IL10_P348, LCN2_P86, ZAP70_P220, AIM2_P624, TAL1_P817) that discriminated PaC patients from controls (C-statistic = 0.85 in phase I; 0.76 in phase II). Interestingly, one CpG site (LCN2_P86) alone could discriminate resectable patients from controls (C-statistic  = 0.78 in phase I; 0.74 in phase II). We also performed methylation quantitative trait loci (methQTL) analysis and identified three CpG sites (AGXT_P180_F, ALOX12_E85_R, JAK3_P1075_R) where the methylation levels were significantly associated with single nucleotide polymorphisms (SNPs) (false discovery rate <0.05). Our results demonstrate that epigenetic variation in easily obtainable leukocyte DNA, manifested by reproducible methylation differences, may be used to detect PaC patients. The methylation differences at certain CpG sites are partially attributable to genetic variation. This study strongly supports future epigenome-wide association study using leukocyte DNA for biomarker discovery in human diseases.  相似文献   

17.
Stimulation of phospholipid methylation by glucose in pancreatic islets   总被引:1,自引:0,他引:1  
A two fold stimulation in the incorporation of [3H-methyl] groups from [3H-methyl] methionine into phospholipids was seen in intact pancreatic islets within six minutes of exposure to a glucose concentration that stimulates insulin release. Nonstimulatory sugars, L-glucose and D-galactose, as well as dibutyryl cAMP, did not affect phospholipid methylation in islet cells. A calcium channel blocker, verapamil, inhibited methylation. These studies suggest that the signal for glucose-induced insulin release could involve phospholipid methylation.  相似文献   

18.
为探讨APN基因启动子区DNA甲基化及mRNA表达与新疆维吾尔族T2DM发生、发展的相关性,文章选择新疆维吾尔族正常个体50例、肥胖个体48例、肥胖伴T2DM个体26例,收集腹部网膜脂肪组织,利用变性高效液相色谱技术检测APN基因启动子区DNA甲基化情况,应用Real-time PCR方法检测APN 基因mRNA表达情况。结果显示,APN基因启动子区DNA甲基化阳性率在正常对照(34%)、肥胖(47.9%)及T2DM组(65.4%)逐渐增加,差异具有统计学意义(P<0.05)。Real-time PCR结果显示,正常对照组APN mRNA相对拷贝数(0.7162)显著高于肥胖(0.4244)及T2DM组(0.4093),差异具有统计学意义(P<0.05)。非T2DM个体相关性分析提示,APN mRNA相对拷贝数与空腹血清葡萄糖(Fasting plasma glucose, FPG)、糖化血红蛋白(Glycosylated hemoglobin, HbA1c)、甘油三酯(Triglyceride, TG)水平显著负相关(P<0.05)。APN基因启动子区DNA甲基化与其mRNA表达负相关,甲基化阳性组相对拷贝数(0.2700)显著低于阴性组(0.7870),差异具有统计学意义(P<0.01)。以上结果提示,APN基因启动子区DNA甲基化通过抑制其 mRNA表达导致糖脂代谢紊乱,可能参与了新疆维吾尔族肥胖及T2DM的发生、发展过程。  相似文献   

19.
Brain expression of heme oxygenase (HO) and nitric oxide synthase (NOS) in hypertension may participate in the pathogenesis of hypertension-related neuronal disorders, such as vascular dementia. In the present study, expression levels of HO and NOS in spontaneously hypertensive rats (SHR) were investigated using Western immunoblotting assay. Expression level of inducible HO-1 in hippocampus of 4-wk prehypertensive SHR was about twofold of that in age-matched Sprague-Dawley (SD) rats (p<0.01). In 23-wk SHR with fully developed hypertension, hippocampal HO-1 level was significantly greater than that of age-matched SD rats (p<0.05), but not different from 4-wk SHR. There was no difference in expression levels of hippocampal HO-2 between SHR and SD rats at different ages. Total enzymatic activity of hippocampal HO was significantly greater in 23-wk SHR than in age-matched SD rats or 4-wk SD/SHR (p<0.01). Although hippocampal expression of nNOS protein was relatively unchanged, iNOS expression in 23-wk SHR was about fourfold lower than that in age-matched SD rats and 4-wk SD/SHR (p<0.01). Total enzymatic activity of hippocampal NOS was significantly lower in 23-wk SHR than in age-matched SD rats or 4-wk SD/SHR (p<0.01). Significantly suppressed Morris water maze performance was found in 23-wk SHR in comparison with age-matched SD rats. Because SHR has been used as a model of vascular dementia and hippocampus is essential for spatial learning and memory, understanding of altered HO/CO and NOS/NO systems in the hippocampus of adult SHR may shed light on the pathogenic development of memory deficits associated with vascular dementia.  相似文献   

20.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is a high-density lipoprotein-associated protein. However, the tissue source(s) for circulating GPI-PLD and whether serum levels are regulated are unknown. Because the diabetic state alters lipoprotein metabolism, and liver and pancreatic islets are possible sources of GPI-PLD, we hypothesized that GPI-PLD levels would be altered in diabetes. GPI-PLD serum activity and liver mRNA were examined in two mouse models of type 1 diabetes, a nonobese diabetic (NOD) mouse model and low-dose streptozotocin-induced diabetes in CD-1 mice. With the onset of hyperglycemia (2- to 5-fold increase over nondiabetic levels), GPI-PLD serum activity and liver mRNA increased 2- to 4-fold in both models. Conversely, islet expression of GPI-PLD was absent as determined by immunofluorescence. Insulin may regulate GPI-PLD expression, because insulin treatment of diabetic NOD mice corrected the hyperglycemia along with reducing serum GPI-PLD activity and liver mRNA. Our data demonstrate that serum GPI-PLD levels are altered in the diabetic state and are consistent with liver as a contributor to circulating GPI-PLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号