首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Plant disease resistance (R) proteins recognize potential pathogens expressing corresponding avirulence (Avr) proteins through 'gene-for-gene' interactions. RPM1 is an Arabidopsis R-protein that triggers a robust defense response upon recognizing the Pseudomonas syringae effector AvrRpm1. Avr-proteins of phytopathogenic bacteria include type III effector proteins that are often capable of enhancing virulence when not recognized by an R-protein. In rpm1 plants, AvrRpm1 suppresses basal defenses induced by microbe-associated molecular patterns. Here, we show that expression of AvrRpm1 in rpm1 plants induced PR-1, a classical defense marker, and symptoms including chlorosis and necrosis. PR-1 expression and symptoms were reduced in plants with mutations in defense signaling genes ( pad4 , sid2 , npr1 , rar1 , and ndr1 ) and were strongly reduced in rpm1 rps2 plants, indicating that AvrRpm1 elicits defense signaling through the Arabidopsis R-protein, RPS2. Bacteria expressing AvrRpm1 grew more on rpm1 rps2 than on rpm1 plants. Thus, independent of its classical 'gene-for-gene' activation of RPM1, AvrRpm1 also induces functionally relevant defenses that are dependent on RPS2. Finally, AvrRpm1 suppressed host defenses and promoted the growth of type III secretion mutant bacteria equally well in rps2 and RPS2 plants, indicating that virulence activity of over-expressed AvrRpm1 predominates over defenses induced by weak activation of RPS2.  相似文献   

6.
7.
8.
9.
随着温室效应的加剧,全球气候变暖已经成为现代农业生产体系所面临的严峻挑战.高温灾害性气候是影响作物产量的一种主要的非生物胁迫.因此,对于农作物生产而言,研究植物耐热信号转导机制不仅有重要的科学意义,而且有现实的紧迫性.最近几年,在阐明植物耐热信号转导机制的研究方面取得了很多重要的进展,这些进展涵盖植物高温胁迫的感受机制、热激转录因子和热激蛋白的表达调控、热激转录因子结合蛋白参与耐热性调控的分子机制等几个主要的方面.热胁迫影响细胞膜系统、RNA、蛋白质的稳定性,同时改变酶的活性和细胞骨架系统.当热胁迫来临时,植物的转录组会发生显著变化,所涉及的基因大约占基因组的2%.这些高温胁迫响应基因构成了热激响应网络,是植物抵御热胁迫的第一道防线.植物的耐热性分为基础耐热性和获得性耐热性.基础耐热性是植物固有的耐热性.获得性耐热性是温和的热驯化诱导的耐热性.获得性耐热性状的形成反映了植物在自然生长环境下适应高温胁迫的生理机制.  相似文献   

10.
11.
12.
13.
14.
Rice is the most important food crop worldwide. Global warming inevitably affects the grain yields of rice. Recent proteomics studies in rice have provided evidence for better understanding the mechanisms of thermal adaptation. Heat stress response in rice is complicated, involving up- or down-regulation of numerous proteins related to different metabolic pathways. The heat-responsive proteins mainly include protection proteins, proteins involved in protein biosynthesis, protein degradation, energy and carbohydrate metabolism, and redox homeostasis. In addition, increased thermotolerance in transgenic rice was obtained by overexpression of rice genes and genes from other plants. On the other hand, heterologous expression of some rice proteins led to enhanced thermotolerance in bacteria and other easily transformed plants. In this paper, we review the proteomic characterization of rice in response to high temperature and achievements of genetic engineering for heat tolerance in rice.  相似文献   

15.
16.
17.
18.
Organelle (mitochondria and chloroplasts in plants) genomes lost a large number of genes after endosymbiosis occurred. Even after this major gene loss, organelle genomes still lose their own genes, even those that are essential, via gene transfer to the nucleus and gene substitution of either different organelle origin or de novo genes. Gene transfer and substitution events are important processes in the evolution of the eukaryotic cell. Gene loss is an ongoing process in the mitochondria and chloroplasts of higher plants. The gene for ribosomal protein S16 (rps16) is encoded in the chloroplast genome of most higher plants but not in Medicago truncatula and Populus alba. Here, we show that these 2 species have compensated for loss of the rps16 from the chloroplast genome by having a mitochondrial rps16 that can target the chloroplasts as well as mitochondria. Furthermore, in Arabidopsis thaliana, Lycopersicon esculentum, and Oryza sativa, whose chloroplast genomes encode the rps16, we show that the product of the mitochondrial rps16 has dual targeting ability. These results suggest that the dual targeting of RPS16 to the mitochondria and chloroplasts emerged before the divergence of monocots and dicots (140-150 MYA). The gene substitution of the chloroplast rps16 by the nuclear-encoded rps16 in higher plants is the first report about ongoing gene substitution by dual targeting and provides evidence for an intermediate stage in the formation of this heterogeneous organelle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号