首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Phytohormones signaling and crosstalk regulating leaf angle in rice   总被引:2,自引:0,他引:2  
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.  相似文献   

5.
6.
In rice (Oryza sativa) and other plants, plant architecture and seed size are closely related to yield. Brassinosteroid (BR) signaling and the mitogen-activated protein kinase (MAPK) pathway (MAPK kinase kinase 10 [MAPKKK10]–MAPK kinase 4 [MAPKK4]–MAPK6) are two major regulatory pathways that control rice architecture and seed size. However, their possible relationship and crosstalk remain elusive. Here, we show that WRKY53 mediated the crosstalk between BR signaling and the MAPK pathway. Biochemical and genetic assays demonstrated that glycogen synthase kinase-2 (GSK2) phosphorylates WRKY53 and lowers its stability, indicating that WRKY53 is a substrate of GSK2 in BR signaling. WRKY53 interacted with BRASSINAZOLE-RESISTANT 1(BZR1); they function synergistically to regulate BR-related developmental processes. We also provide genetic evidence showing that WRKY53 functions in a common pathway with the MAPKKK10–MAPKK4–MAPK6 cascade in leaf angle and seed size control, suggesting that WRKY53 is a direct substrate of this pathway. Moreover, GSK2 phosphorylated MAPKK4 to suppress MAPK6 activity, suggesting that GSK2-mediated BR signaling might also regulated MAPK pathway. Together, our results revealed a critical role for WRKY53 and uncovered sophisticated levels of interplay between BR signaling and the MAPK pathway in regulating rice architecture and seed size.

WRKY53 mediates crosstalk between BR and MAPK signaling to regulate rice architecture and seed size.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Brassinosteroids (BRs) and abscisic acid (ABA) are essential regulators of plant growth and stress tolerance. Although the antagonistic interaction of BRs and ABA is proposed to ensure the balance between growth and defense in model plants, the crosstalk between BRs and ABA in response to chilling in tomato (Solanum lycopersicum), a warm-climate horticultural crop, is unclear. Here, we determined that overexpression of the BR biosynthesis gene DWARF (DWF) or the key BR signaling gene BRASSINAZOLE-RESISTANT1 (BZR1) increases ABA levels in response to chilling stress via positively regulating the expression of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE1 (NCED1). BR-induced chilling tolerance was mostly dependent on ABA biosynthesis. Chilling stress or high BR levels decreased the abundance of BRASSINOSTEROID-INSENSITIVE2 (BIN2), a negative regulator of BR signaling. Moreover, we observed that chilling stress increases BR levels and results in the accumulation of BZR1. BIN2 negatively regulated both the accumulation of BZR1 protein and chilling tolerance by suppressing ABA biosynthesis. Our results demonstrate that BR signaling positively regulates chilling tolerance via ABA biosynthesis in tomato. The study has implications in production of warm-climate crops in horticulture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号