首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.  相似文献   

4.
We determined the relationship between composition and mechanical properties of elytra (modified forewings that are composed primarily of highly sclerotized dorsal and less sclerotized ventral cuticles) from the beetles Tribolium castaneum (red flour beetle) and Tenebrio molitor (yellow mealworm). Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult eclosion, the elytron of Tenebrio is ductile and soft with a Young's modulus (E) of 44 ± 8 MPa, but it becomes brittle and stiff with an E of 2400 ± 1100 MPa when fully tanned. With increasing tanning, dynamic elastic moduli (E') increase nearly 20-fold, whereas the frequency dependence of E' diminishes. These results support the hypothesis that cuticle tanning involves cross-linking of components, while drying to minimize plasticization has a lesser impact on cuticular stiffening and frequency dependence. Suppression of the tanning enzymes laccase-2 (TcLac2) or aspartate 1-decarboxylase (TcADC) in Tribolium altered mechanical characteristics consistent with hypotheses that (1) ADC suppression favors formation of melanic pigment with a decrease in protein cross-linking and (2) Lac2 suppression reduces both cuticular pigmentation and protein cross-linking.  相似文献   

5.
Cuticle tanning in insects involves simultaneous cuticular pigmentation and hardening or sclerotization. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) wild-type and body color mutant strains were investigated to relate body coloration and elytral mechanical properties. There was no statistically significant variation in the storage modulus E′ among the elytra from jet, cola, sooty and black mutants or between the mutants and the wild-type GA-1 strain: E′ averaged 5.1 ± 0.6 GPa regardless of body color. E′ is a power law function of oscillation frequency for all types. The power law exponent, n, averaged 0.032 ± 0.001 for elytra from all genotypes except black; this small value indicated that the elytra are cross-linked. Black elytra, however, displayed a significantly larger n of 0.047 ± 0.004 and an increased loss tangent (tan δ), suggesting that metabolic differences in the black mutant strain result in elytra that are less cross-linked and more pigmented than the other types. These results are consistent with the hypothesis that black elytra have a β-alanine-deficient and dopamine-abundant metabolism, leading to greater melanin (black pigment) production, probably at the expense of cross-linking of cuticular proteins mediated by N-β-alanyldopamine quinone.  相似文献   

6.
Proteins were extracted from the cuticle of mid-instar nymphs of locusts, Locusta migratoria, and cockroaches, Blaberus craniifer. Seven proteins were purified from the locust extract and five from the cockroach extract, and their amino acid sequences were determined. Polyacrylamide gel electrophoresis indicates that the proteins are present only in the post-ecdysially deposited layer of the nymphal cuticles. One of the locust and one of the cockroach nymphal proteins contain a 68-residue motif, the RR-2 sequence, which has been reported for several proteins from the solid cuticles of other insect species. Two of the cockroach proteins contain a 75-residue motif, which is also present in a protein from the larval/pupal cuticle of a beetle, Tenebrio molitor, and in proteins from the exoskeletons of a lobster, Homarus americanus, and a spider, Araneus diadematus. The motif contains a variant of the Rebers-Riddiford consensus sequence, and is called the RR-3 motif. One of the locust and three of the cockroach post-ecdysial proteins contain one or more copies of an 18-residue motif, previously reported in a protein from Bombyx mori pupal cuticle. The nymphal post-ecdysial proteins from both species have features in common with pre-ecdysial proteins (pharate proteins) in cuticles destined to be sclerotised; they show little similarity to the post-ecdysial cuticular proteins from adult locusts or to proteins from soft, pliable cuticles. Possible roles for post-ecdysial cuticular proteins are discussed in relation to the reported structures.  相似文献   

7.
Protein fractions of insect cuticles with different mechanical properties have related values of polarity and hydrophobicity. Hydrophobicity is important for the self-assembly of cuticle which is produced prior to the moult and in plasticization of cuticle. The cuticles of soft-bodied fly larvae are quite distinct from those of exopterygotes (e.g. locusts) and this can be related to the chemistry and mode of tanning. The properties of cuticular proteins are compared: the proteins of the pliant cuticles most closely resemble globulins, and the proteins in stiff cuticles are more like fibrous and hydrophobic structural proteins. Changes in the environment of the proteins may alter their shape and hence the mechanical properties of the cuticle.  相似文献   

8.
Identification of authenticated cuticular proteins has been based on isolation and sequencing of individual proteins extracted from cleaned cuticles. These data facilitated classification of sequences from conceptual translation of cDNA or genomic sequences. The question arises whether such putative cuticular proteins actually are incorporated into the cuticle. This paper describes the profiling of cuticular proteins from Anopheles gambiae starting with cuticle cleaned by the insect itself in the course of molting. Proteins extracted from cast larval head capsules and cast pupal cuticles were fractionated by 1D SDS gel electrophoresis. Large gel slices were reduced, carbamidomethylated and digested with trypsin. The pellet remaining after SDS extraction was also treated with trypsin. The resulting peptides were separated on a C18 column and then analyzed by tandem mass spectrometry. Two-hundred-ninety-five peptides from putative cuticular proteins were identified; these corresponded to a minimum of 69 and a maximum of 119 different proteins. Each is reported as an authentic Anopheles cuticular protein for the first time. In addition to members of two known cuticular protein families, members of additional families likely to be structural components of the cuticle were identified. Furthermore, other peptides were identified that can be attributed to molting fluid, muscle and sclerotizing agents.  相似文献   

9.
C Bordereau 《Tissue & cell》1982,14(2):371-396
The physogastric termite queen is the most striking example in insects of growth in size without cuticular moulting. This phenomenon has been studied with electron microscopy and histochemical tests in two species of higher termites, Cubitermes fungifaber and Macrotermes bellicosus. The abdominal hypertrophy (physogastry) is allowed by growth of the arthrodial membranes of the swarming imago. The growth is slow (over several years) but important: the cuticular dry weight is multiplied by 20 in C. fungifaber, by 100-150 in M. bellicosus. The termite queen cuticle arises from the transformation of the cuticle of the swarming imago or imaginal cuticle (unfolding and growing of the epicuticle, stretching of the endocuticle, resorption of the subcuticle) and from the secretion of a new endocuticle or royal endocuticle. The termite queen is the first example known in insects of epicuticular growth. In the physogastric queen, three cuticular types are observed: the rigid cuticle of the sclerites, the soft cuticle of the arthrodial membranes and the partially rigid cuticle of special structures, the neosclerites, which show both rigidity and growth. The fibrillar architecture varies according to the abdominal zones and the position within the cuticle. It appears to be determined by the forces arising from the musculature and the anisometric abdominal growth. The king does not become physogastric, although its cuticle is also modified.  相似文献   

10.
11.
In beetles, the system responsible for an attachment of forewings (elytra) to the thorax consists of interlocking fields of microtrichia (MT) located between thorax and body and between left and right elytra. The present study provides comparative data about microtrichia design on the thorax and elytra in three species of tenebrionid beetles (Tribolium castaneum, Tenebrio molitor, Zophobas rugipes) (Coleoptera : Tenebrionidae), which are different in their size. The length, width, density and directionality of microtrichia in 13 MT fields (4 on the thorax, 1 on the abdomen, 7 on the elytra, and 1 on the costal vein of the hindwing) were quantified. (1) Parameters studied are dependent on the dimension of an insect. The length of the microtrichia of most fields compared increases with an increase in body size. The MT width in the majority of fields increases with an increase in the elytra length. The MT density decreases with an increase in the elytra length. (2) Both width and length of microtrichia increase with an increase in the distance between single MT. The density of outgrowths increases with an increase in their length and width. (3) The fields oriented along the same spatial axis constitute functional groups responsible for a particular direction. Co-opted fields can be oriented in the same or opposite directions. (4) The design of MT correlates in co-opted surfaces. There are 3 field groups, which were stated as functionally corresponding to one another : the medial, anterio-lateral, and posterio-lateral. The lengths and widths of microtrichia from fields of these functional groups were quite similar in corresponding fields. Length-to-width ratios of MT in elytral fields were usually weakly correlated with those of thoracic fields. The distances between microtrichia on the elytra surface directly depended on those of the thorax. Distance-to-width ratio of MT of one surface slightly increased with an increase in this parameter on the co-opted surface. The MT densities on co-opted fields were usually quite different. (5) The ultrastructure of the cuticle suggests differences in the material properties of the cuticle between MT fields. The thoracic fields usually consist of elastic cuticle, whereas elytral fields are much harder. Usually, a MT field of elastic cuticle corresponds to the field composed of hard cuticles. The study also provides information about the ultrastructure of epidermal cells and about the design of pore channels, which are presumably responsible for production and transport of an adhesive secretion into the area of contact between lateral fields. Sensory organs monitoring contact between co-opted binding sites were also studied. The results of this study may aid in understanding the morphological basis of cuticular microsculptures acting as frictional devices.  相似文献   

12.
The proteins of the cuticle of adult Ascaris lumbricoides suum were characterized with respect to heterogeneity, glycosylation, and susceptibility to collagenase. Pepsin digestion of intact cuticles was used to determine the extent of stable triple-helical structures of the cuticular components. With sodium dodecyl sulfate-poly-acrylamide gel electrophoresis, it was shown that treatment of purified cuticles with beta-mercaptoethanol released three components (99, 90, and 68 kDa) which comprise 95% of the total solubilized material. The remaining fraction consists of at least four components (16, 28, 154, and 173 kDa). Periodic acid-Schiff staining showed that the only glycoprotein was the 173-kDa component. All cuticular components, except the 173-kDa protein, were degraded by bacterial collagenase. Pepsin digestion of intact cuticles for 24 hr at 4 C produced, after reduction, a 95-kDa fragment; by 96 hr, four fragments (95, 90, 83, and 77 kDa) were evident. When the 96-hr pepsin digest was treated with fresh pepsin, the 77-kDa fragment became the major constituent. With agarose gel electrophoresis, analysis of non-reduced, pepsin-released material revealed intact aggregates that were greater than 2 X 10(3) kDa. The enzyme digestion studies indicate that, with the exception of the 173-kDa component, each cuticular protein contains collagenous domains and that, within the cuticle, the longest contiguous collagen chain in a triple-helical conformation has a uniform molecular size of 77 kDa.  相似文献   

13.
《Insect Biochemistry》1987,17(3):469-484
Post-translational modifications are a conspicuous feature of the proteins of vertebrate extracellular matrices such as cartilage. Yet this feature remains virtually unexplored with insect cuticle, a situation this paper begins to remedy. Cuticular proteins were extracted from cuticles of Hyalophora cecropia and separated on isoelectrofocusing and 2D gels. Periodic acid-Schiff reagent stained several proteins from flexible cuticles and a few proteins from rigid cuticles, indicating that some proteins were glycosylated. Elucidation of the specific nature of this glycosylation came from probing electrophoretically separated cuticular proteins blotted onto nitrocellulose with biotinylated lectins. Most major cuticular proteins did not react; minor cuticular proteins and molecules which do not stain with Coomassie blue were found to bind lectins specific for mannose and N-acetylgalactosamine. Limited binding was also detected with lectins specific for N-acetylglucosamine, galactose and fucose. No sialic acid was detected using either lectins or neuraminidase digestion. The amount of glycosylation was greatest in proteins extracted from flexible cuticles. Although several proteins stained with Alcian blue indicating presence of sulfation, 35S which had been incorporated at low levels in cuticular proteins corresponded to [35S]methionine. No indication of the presence of mammalian-type glycosaminoglycans in insect cuticles was obtained after treatment with chondroitinase or nitrous acid. The functional significance of the modifications detected remains unknown. No evidence for phosphorylated proteins or lipoproteins was found.  相似文献   

14.
This paper emphasizes the importance of the protein component of cuticles. Correlation of electrophoretic charge distribution of individual cuticular proteins and physical properties of the cuticles from which they were extracted, as well as interpopulation and interspecies conservation of electrophoretic patterns, are used to argue that individual proteins play precise roles in the cuticle. Glycosylation of cuticular proteins is described, but no function for these modifications is yet known. Analogy is drawn to analyses of chorion proteins and the case is made that analysis of amino acid sequence data is likely to provide insights into how cuticular proteins and chitin interact to construct the diverse types of cuticles.  相似文献   

15.
《Insect Biochemistry》1987,17(1):21-28
Rust-red wild and black mutant strains of the red flour beetle, Tribolium castaneum, were used to investigate temporal patterns of catecholamine and β-alanine content during sclerotization and pigmentation of adult cuticle and to relate these patterns to corresponding changes in cuticle resistance to puncture. Rust-red elytral cuticle sclerotized more rapidly than black cuticle until 6 days after adult eclosion when both became equal in puncture resistance. The cuticular concentrations of N-β-alanyldopamine (NBAD), β-alanine and 3,4-dihydroxyphenylacetic acid (DOPAC) increased more rapidly in the rust-red strain than in the black strain during the first 7 days following adult eclosion. Conversely, cuticular dopamine increased more rapidly in black than in the red strain. Thus the rust-red pigmentation and rapid sclerotization appear to be related to the availability of β-alanine, N-β-alanyldopamine and DOPAC. Melanization was prevented and rust-red pigmentation induced by injections of β-alanine or NBAD into newly ecdysed black mutant beetles. Crosses of the two strains generally had intermediate levels of cuticular dopamine and β-alanine, but the NBAD levels were similar to those of the rust-red strain. Dopamine, NBAD and DOPAC levels became similar in both black and rust-red strains about 6 days after adult ecdysis as did resistance to puncture. Therefore, dopamine appears to be directed initially into the melanin pathway in black adults due to a temporary lack of N-acylation with β-alanine. After the melanization phase, dopamine is metabolized to sclerotization precursors eventually resulting in normal physical properties of the exoskeleton.  相似文献   

16.
17.
18.
Abstract. Autotomy of the elytra (scales) in the annelid Alentia gelatinosa occurs at a breakage plane near the junction between the elytron and its elytrophore (stalk), and requires fracture of the external epidermal cuticle. The mechanism of cuticular fracture was investigated by light and electron microscopy, glycoconjugate histochemistry, direct observation of autotomy in isolated preparations, and mechanical tests. The breakage plane crosses the elytrophoral wall at a cuticular thickening and passes through the subelytral cavity between the elytron and the terminal septum of the elytrophore. At the cuticular breakage zone (CBZ), the collagenous framework of the normal cuticle is replaced with non‐collagenous microfibrils. The CBZ has a complex glycoconjugate composition and includes a strongly sulfated, uronic acid‐containing glycosaminoglycan and a high proportion of disulfide or sulfydryl linkages. Tonofilament‐rich epidermal cells (tendon cells) are attached to the thick cuticle on the dorsal and ventral sides of the CBZ. Dorsal tendon cells have long processes that extend into the elytron near the roof of the subelytral cavity. Ventral tendon cells are linked by connective tissue to the longitudinal and terminal sphincter muscles of the elytrophore. Mechanical tests showed that the elytrophoral wall is not inherently weaker at the autotomy plane than elsewhere. It is hypothesized that at autotomy (i) contractile force generated by the sphincter muscle is transmitted through elytrophoral tendon cells to the ventral side of the CBZ and (ii) contraction of the longitudinal and main circular muscles of the elytrophore increases hydrostatic pressure in its lumen, everts the terminal septum, and generates tension that is transmitted through elytral tendon cells to the dorsal side of the CBZ. This results in stress concentration at the basal edge of the CBZ and initiates fracture. The distinctive microstructure and macromolecular composition of the CBZ may reduce its fracture toughness and make it more susceptible to brittle failure.  相似文献   

19.
We are characterizing the cuticular proteins of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae) to determine their role in the function of the exoskeleton. Based on qualitative analyses of cuticles, we focused on the sodium dodecyl sulfate (SDS)-extractable proteins. A small-scale cuticle "mini-prep" procedure was devised that yields preparations virtually free of contaminating cellular material compared to hand-dissected preparations, as assessed by fluorescent microscopy using DAPI to stain nuclei. Proteins extracted in 1% SDS from various developmental stages (last larval instar, pupal, adult) were analyzed by one-dimensional denaturing polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. The cuticular protein profiles show both similarities and differences among the stages examined. The amino acid composition, glycosylation, and partial amino acid sequence of several abundant cuticular proteins indicate similarity to cuticular proteins of other insects.  相似文献   

20.
Buffer-soluble cuticular proteins of the abdomen of the yellow mealworm, Tenebrio molitor, were analyzed by SDS-polyacrylamide gel electrophoresis. Since the abdominal epidermis of Tenebrio persists throughout the insect's life, these cuticular proteins reflect the secretory history of a continuous line of cells during its entire metamorphic developmental program. Twenty-two to thirty-eight bands were detected in extracts of larval cuticle, 11 to 35 in pupal cuticular extracts, and 30 to 41 in extracts from adults. No population polymorphism was apparent, nor was there any sexual dimorphism, in these cuticular proteins. At each metamorphic stage, the cuticular proteins formed a unique banding pattern. Bands unique to the larval and to the adult exocuticular extracts were observed. Extracts from cuticles of freshly ecdysed animals (exocuticle) differed from extracts from animals in which sclerotization and postecdysial (endocuticle) deposition had occurred, both in number of hands and in their molecular weight distributions. Some proteins became less soluble during sclerotization. The majority of the exocuticular bands from all three stages had molecular weights below 25,000; higher-molecular-weight proteins were extracted from postecdysial animals of each stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号