首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA.  相似文献   

2.
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ) tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem, and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. AR‐associated coregulator 70 (ARA70) was the first coregulator of AR to be identified, and it has been shown to interact with AR and increase its protein stability. Here, we report that genistein, an isoflavone found in soy, disrupts the interaction between AR and ARA70 and promotes the degradation of mutant AR in neuronal cells and transgenic mouse models of SBMA. We also demonstrate that dietary genistein ameliorates behavioral abnormalities, improves spinal cord and muscle pathology, and decreases the amounts of monomeric AR and high‐molecular‐weight mutant AR protein aggregates in SBMA transgenic mice. Thus, genistein treatment may be a potential therapeutic approach for alleviating the symptoms of SBMA by disrupting the interactions between AR and ARA70.  相似文献   

3.
Hormone-dependent aggregation of the androgen receptor (AR) with a polyglutamine (polyQ) stretch amplification (>38) is considered to be the causative agent of the neurodegenerative disorder spinal and bulbar muscular atrophy (SBMA), consistent with related neurodegenerative diseases involving polyQ-extended proteins. In spite of the widespread acceptance of this common causal hypothesis, little attention has been paid to its apparent incompatibility with the observation of AR aggregation in healthy individuals with no polyQ stretch amplification. Here we used atomic force microscopy (AFM) to characterize sub-micrometer scale aggregates of the wild-type (22 glutamines) and the SBMA form (65 glutamines), as well as a polyQ deletion mutant (1 glutamine) and a variant with a normal length polyQ stretch but with a serine to alanine double mutation elsewhere in the protein. We used a baculovirus-insect cell expression system to produce full-length proteins for these structural analyses. We related the AFM findings to cytotoxicity as measured by expression of the receptors in Drosophila motoneurons or in neuronal cells in culture. We found that the pathogenic AR mutants formed oligomeric fibrils up to 300-600nm in length. These were clearly different from annular oligomers 120-180nm in diameter formed by the nonpathogenic receptors. We could also show that melatonin, which is known to ameliorate the pathological phenotype in the fly model, caused polyQ-extended AR to form annular oligomers. Further comparative investigation of these reproducibly distinct toxic and non-toxic oligomers could advance our understanding of the molecular basis of the polyQ pathologies.  相似文献   

4.
5.

Background

Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA). We therefore broadly characterized gene expression in skeletal muscle of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded (polyQ) AR knock-in model (AR113Q), a polyQ AR transgenic model (AR97Q), and a transgenic mouse that overexpresses wild type AR solely in skeletal muscle (HSA-AR). HSA-AR mice were included because they substantially reproduce the KD/SBMA phenotype despite the absence of polyQ AR.

Methodology/Principal Findings

We performed microarray analysis of lower hindlimb muscles taken from these three models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17% between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington''s Disease, and to those common to muscle atrophy from diverse causes.

Conclusions/Significance

By comparing patterns of gene expression in three independent models of KD/SBMA, we have been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA.  相似文献   

6.
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 N-terminal amino acids of htt have been shown to further modulate aggregation. Additionally, these 17 amino acids appear to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-lengths (35Q, 46Q, 51Q, and myc-53Q) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. Furthermore, the addition of an N-terminal myc-tag to the htt exon1 fragments impeded the interaction of htt with the bilayer.  相似文献   

7.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.  相似文献   

8.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neurodegenerative disorder affecting only males and is caused by expanded polyglutamine (polyQ) stretches in the N-terminal A/B domain of human androgen receptor (hAR). Although no overt phenotype was detected in adult fly eye photoreceptor neurons expressing mutant hAR (polyQ 52), ingestion of androgen or its known antagonists caused marked neurodegeneration with nuclear localization and structural alteration of the hAR mutant. Ligand-independent toxicity was detected with a truncated polyQ-expanded A/B domain alone, which was attenuated with cytosolic trapping by coexpression of the unliganded hAR E/F ligand binding domain. Thus, our findings suggest that the full binding of androgen to the polyQ-expanded hAR mutants leads to structural alteration with nuclear translocation that eventually results in the onset of SBMA in male patients.  相似文献   

9.
Spinal and bulbar muscular atrophy (SBMA) is an inherited neurodegenerative disorder caused by the expansion of the polyglutamine (polyQ) tract of the androgen receptor (AR-polyQ). Characteristics of SBMA include proximal muscular atrophy, weakness, contraction fasciculation and bulbar involvement. MicroRNAs (miRNAs) are a diverse class of highly conserved small RNA molecules that function as crucial regulators of gene expression in animals and plants. Recent functional studies have shown the potent activity of specific miRNAs as disease modifiers both in vitro and in vivo. Thus, potential therapeutic approaches that target the miRNA processing pathway have recently attracted attention. Here we describe a novel therapeutic approach using the adeno-associated virus (AAV) vector–mediated delivery of a specific miRNA for SBMA. We found that miR-196a enhanced the decay of the AR mRNA by silencing CUGBP, Elav-like family member 2 (CELF2). CELF2 directly acted on AR mRNA and enhanced the stability of AR mRNA. Furthermore, we found that the early intervention of miR-196a delivered by an AAV vector ameliorated the SBMA phenotypes in a mouse model. Our results establish the proof of principle that disease-specific miRNA delivery could be useful in neurodegenerative diseases.  相似文献   

10.
Abstract Several neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeast Saccharomyces cerevisiae to investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100-600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.  相似文献   

11.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to interact with proteins containing the polyglutamine (polyQ) domain. The present study was undertaken to evaluate the potential contributions of the polyQ and polyproline (polyP) domains to the co-localization of mutant huntingtin (htt) and GAPDH. Overexpression of N-terminal htt (1-969 amino acids) with 100Q and 46Q (httl-969- 100Q and httl-969-46Q, mutant htt) in human mammary gland carcinoma MCF-7 cells formed more htt aggregates than that of httl-969-18Q (wild-type htt). The co-localization of GAPDH with htt aggregates was found in the cells expressing mutant but not wild-type htt. Deletion of the polyP region in the N-terminal htt had no effect on the co-localization of GAPDH and mutant htt aggregates. These results suggest that the polyQ domain, but not the polyP domain, plays a role in the sequestration of GAPDH to aggregates by mutant htt. This effect might contribute to the dysfunction of neurons caused by mutant htt in Huntington's disease.  相似文献   

12.
Abnormal polyglutamine (polyQ) expansion in the N-terminal domain of the human androgen receptor (hAR) is known to cause spinobulbar muscular atrophy (SBMA), a hereditary human neurodegenerative disorder. To explore the molecular mechanisms of neurodegeneration in SBMA, we genetically screened modulators of neurodegeneration in a Drosophila SBMA experimental model system. We identified hoip as an accelerator of polyQ-induced neurodegeneration. We found that hoip forms a complex with 18s rRNA together nop56 and nop5 proteins, whose human homologs are known to form a snoRNP complex involved in ribosomal RNA processing. Significantly, the levels of mutant polyQ-hAR were up-regulated in a mutant line overexpressing hoip. Consistently, severe neurodegeneration phenotype (rough eye) was also observed in both nop56 and nop5 overexpression mutant lines. These findings suggest that the process of neurodegeneration induced by abnormal polyQ expansion in the hAR may be regulated by the activity of snoRNP complex.  相似文献   

13.
14.
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington’s disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.  相似文献   

15.
At least nine inherited neurodegenerative diseases, including Huntington's, are caused by poly(L-glutamine) (polyGln, polyQ) expansions > 35-40 repeats in widely or ubiquitously expressed proteins. Except for their expansions, these proteins have no sequence homologies, and their functions mostly remain unknown. Although each disease is characterized by a distinct pathology specific to a subset of neuronal cells, the formation of neuronal intranuclear aggregates containing protein with an expanded polyQ is the hallmark and common feature to most polyQ disorders. The neurodegeneration is thought to be caused by a toxic gain of function that occurs at the protein level and depends on the length of the expansion: Longer repeats cause earlier age of onset and more severe symptoms. To address whether there is a structural difference between polyQ having < 40 versus > 40 residues, we undertook an X-ray fiber diffraction study of synthetic polyQ peptides having varying numbers of residues: Ac-Q8-NH2, D2Q15K2, K2Q28K2, and K2Q45K2. These particular lengths bracket both the range of normalcy (9-36 repeats) and the pathological (45 repeats), and therefore could be indicative of the structural changes expected in expanded polyQ domains. Contrary to expectations of different length-dependent morphologies, we accounted for all the X-ray patterns by slablike, beta-sheet structures, approximately 20 A thick in the beta-chain direction, all having similar monoclinic lattices. Moreover, the slab thickness indicates that K2Q45K2, rather than forming a water-filled nanotube, must form multiple reverse turns.  相似文献   

16.
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.  相似文献   

17.
18.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   

19.
《Autophagy》2013,9(8):1194-1197
Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the cytoplasm, it can be degraded by autophagy, resulting in amelioration of its toxic effects, as has been observed in other polyglutamine expansion diseases involving cytoplasmic mutant proteins. However, we have also found that pharmacological induction of autophagy protects SBMA motor neurons from the toxic effects of even nuclear localized mutant AR, albeit without affecting mutant nuclear AR levels. Thus, we have further investigated the mechanism by which autophagy elicits therapeutic benefit in cell culture. We found that endogenous autophagy only slightly alters nuclear mutant AR aggregation compared to substantial effects on cytoplasmic AR aggregation. Interestingly, pharmacological activation of mTOR-dependent autophagy did not significantly alter nuclear AR aggregation, whereas we observed that it protects SBMA motor neurons. Our findings indicate that therapeutic intervention to induce autophagy represents a potential potent benefit for SBMA, and that it likely does so by protecting SBMA motor neurons independent of a direct effect on mutant AR.  相似文献   

20.
Formation of intracellular aggregates is the hallmark of polyglutamine (polyQ) diseases. We analyzed the components of purified nuclear polyQ aggregates by mass spectrometry. As a result, we found that the RNA-binding protein translocated in liposarcoma (TLS) was one of the major components of nuclear polyQ aggregate-interacting proteins in a Huntington disease cell model and was also associated with neuronal intranuclear inclusions of R6/2 mice. In vitro study revealed that TLS could directly bind to truncated N-terminal huntingtin (tNhtt) aggregates but could not bind to monomer GST-tNhtt with 18, 42, or 62Q, indicating that the tNhtt protein acquired the ability to sequester TLS after forming aggregates. Thioflavin T assay and electron microscopic study further supported the idea that TLS bound to tNhtt-42Q aggregates at the early stage of tNhtt-42Q amyloid formation. Immunohistochemistry showed that TLS was associated with neuronal intranuclear inclusions of Huntington disease human brain. Because TLS has a variety of functional roles, the sequestration of TLS to polyQ aggregates may play a role in diverse pathological changes in the brains of patients with polyQ diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号