首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis   总被引:2,自引:0,他引:2  
Sinomenine is an active component isolated from Sinomenium acutum and is widely used as an immunosuppressive drug for treating autoimmune diseases. CD4(+) T-cell population plays a key role in adaptive immune response and is related to some autoimmune diseases. In this study, we investigated the possible immunosuppressive effect of sinomenine on CD4(+) T cells and its underlying mechanism. Our data demonstrated that sinomenine remarkably suppressed the proliferation of CD4(+) T cells, blocked the cell cycle progression from G0/G1 phase to S plusG2/M phases. Finally, the immunosuppressive activity elicited by sinomenine in CD4(+) primary lymphocytes was found to be largely accounted for by caspase 3-dependent cells apoptosis. Sinomenine did not significantly alter the expression of bcl-2 in activated CD4(+) primary T cells, suggesting that bcl-2 might not be involved in sinomenine-induced T cells apoptosis. In sum, this study proposes a novel mechanism for the immunosuppressive function of sinomenine on primary mouse CD4(+) T cells.  相似文献   

2.
3.
Previously, we demonstrated that in vitro treatment of B16F10 murine melanoma cells with interleukin-2 (IL-2) enhances proliferation and metastasis. To further investigate the role played by IL-2 in human melanomas, we studied the expression of IL-2/IL-2 receptor and the effect of IL-2 on the proliferation of melanoma cell lines derived from primary (A375 and RMS cell lines) and metastatic (Hs294T cell line) tumours. We found a constitutive expression of cytoplasmic IL-2 and alpha, beta and gamma-subunits of the IL-2R on the surface of the three melanoma cell lines. The presence of IL-2 in the culture increased the proliferation rate in A375 and RMS cell lines, but no effect was observed in Hs294T metastatic cells. Biologically active IL-2 could be found in the supernatant of the three melanoma cell lines, particularly in A375 and RMS cells, in which an inhibition of the proliferation rate was observed when IL-2 was blocked. Moreover, the combination of anti-IL-2R beta and anti-IL-2R gamma blocking antibodies induced a significant down-regulation of cell proliferation in the three melanoma cell lines, and the combination of anti-IL-2R alpha, anti-IL-2R beta and anti-IL-2R gamma blocking antibodies inhibited IL-2-mediated growth stimulation in A375 and Hs294T cell lines. In RMS cells, a more significant effect was observed when only IL-2R gamma was blocked. Finally, exogenous IL-2 modulated the IL-2 endogenously produced by melanoma cells. These data show that IL-2 may modulate the growth of melanoma cells through autocrine or/and paracrine mechanisms.  相似文献   

4.
5.
6.
Type 2 diabetes mellitus (T2DM) accounts for more than 90% of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. Sinomenine is a natural bioactive component extracted from the Sinomenium acutum and has anti-inflammatory effects. The aim of our study was to investigate the effects of sinomenine on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with sinomenine were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and mRNA in T2DM rat DRG were higher compared with those of the control, while those in T2DM rats treated with sinomenine were significantly lower compared with those of the T2DM rats. Sinomenine significantly inhibited P2X3 agonist ATP-activated currents in HEK293 cells transfected with the P2X3 receptor. Sinomenine decreased the phosphorylation and activation of P38MAPK in T2DM DRG. Therefore, sinomenine treatment may suppress the up-regulated expression and activation of the P2X3 receptor and relieve the hyperalgesia potentiated by the activation of P38MAPK in T2DM rats.  相似文献   

7.
For understanding of signaling molecules important in lung cancer growth and progression, IL-1beta effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1beta exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1beta increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1beta exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-kappaB and HIF-1alpha in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1beta-induced iNOS expression involved signaling pathways in addition to JAK-STAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1beta-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment.  相似文献   

8.
Sézary syndrome (SS) is the leukemic phase of cutaneous T cell lymphoma characterized by the proliferation of clonally derived CD4+ T cells that release cytokines of the Th2 T cell phenotype (IL-4, IL-5, IL-10), whereas Th1 T cell cytokines (IL-2, IFN-gamma) are markedly depressed as is expression of IL-12, a pivotal cytokine for Th1 cell differentiation. Normal Th1 cells express both the beta 1 and beta 2 chains of the IL-12 receptor (IL-12R) and tyrosine phosphorylate STAT4 in response to IL-12. Th2 T cells express only the IL-12R beta 1 and thus do not tyrosine phosphorylate STAT4 in response to IL-12. To determine whether SS cells are Th2-like at the level of IL-12 signal transduction, we analyzed RNA from seven patients for the presence of message for the IL-12R beta 1 and beta 2 genes using RNase protection assays and assessed whether IL-12 induced tyrosine-phosphorylation of STAT4 by immunoblotting. In PBL from six of seven SS patients tested, beta 2 message was expressed at low to undetectable levels and its expression could not be stimulated by either IFN-alpha or IFN- gamma, which stimulated beta 2 expression in control PBL. The absence of beta 2 expression is further supportive evidence for the Th2 lineage of SS cells. However, unlike normal Th2 cells, SS cells also showed severely reduced levels of STAT4, suggesting that they have a depressed response to any inducer of the STAT4 signal transduction pathway, including IFN-alpha. This is the first observation linking STAT4 gene expression with a human disease and suggests that dysregulation of STAT4 expression may be significant to the development and/or progression of SS.  相似文献   

9.
10.
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.  相似文献   

11.
Wang H  Xie X  Lu WG  Ye DF  Chen HZ  Li X  Cheng Q 《Life sciences》2004,74(14):1739-1749
Deficient T cell immune function and intracellular signaling in cancer patients may result from effects of tumors or their products on lymphocytes. Recently, it was demonstrated that several ovarian carcinoma cell lines could produce soluble factors that inhibited T cell proliferation. The aim of this study is to assess the effect of supernatants from 3 ovarian carcinoma cell lines (OVCAR3, CAOV3, SKOV3) on signal transduction elements that are linked to the IL-2R and its JAK-STAT pathway. A profound inhibition of proliferation, lower level of IFN-gamma and higher level of IL-10 gene expression were observed when CD8+ T cells were co-cultured with supernatants from 3 ovarian carcinoma cell lines. Cell cycle studies on inhibited CD8+ T cells showed most of them were growth arrested in G0/G1 phase. Western blot analysis showed that tumor supernatants suppressed expression of JAK3 and tyrosine phosphorylation of STAT5. JAK1 was not altered and the inhibition of STAT3 only appeared in OVCAR3 cells. Tumor supernatants also partially blocked induction of IL-2R beta and gamma chains expression. These findings suggest that ovarian carcinoma cells may suppress T cell proliferation through inhibition IL-2 dependent signaling pathways, which may be a mechanism of ovarian carcinoma induced immunosuppression.  相似文献   

12.
The effect of rTNF-alpha on human T cell function was examined and compared with that of rIL-1 beta by assessing the ability of each cytokine to support mitogen-induced proliferation, IL-2 production, and IL-2R expression. TNF-alpha and IL-1 beta each enhanced DNA synthesis induced by PHA or immobilized mAb to the CD3 molecular complex. In addition, each cytokine increased the number of cells entering the G1 phase of the cell cycle and augmented IL-2R expression. The combination of optimal concentrations of these factors supported these responses to a greater extent than either cytokine alone, suggesting that T cell responsiveness is independently regulated by the action of at least two separate monocyte derived cytokines. Whereas TNF-alpha had little effect, IL-1 beta augmented IL-2 mRNA expression and IL-2 production by mitogen-stimulated cells. Furthermore, IL-1 beta enhanced proliferation with increasing length of culture. Whereas TNF-alpha also enhanced proliferation late in culture, it was less effective in this regard than IL-1 beta. Thus, IL-1 beta and TNF-alpha augment mitogen-induced T cell proliferation by increasing the number of cells initially activated and by promoting subsequent cell cycle progression. They differ, however, in their capacity to promote IL-2 mRNA and IL-2 production and therefore ongoing T cell proliferation.  相似文献   

13.
mAb to monomorphic determinants of HLA class II Ag have been shown to inhibit monocyte-dependent OKT3-induced T cell proliferation, indicating that MHC class II molecules play a regulatory role also in Ag nonrestricted, CD3-induced T cell proliferation. This effect involves several steps in the process of T cell activation and proliferation, including IL-1 beta, IL-6, and IL-2 secretion and IL-2R alpha expression. In the present study, we analyzed the effect of an anti-HLA class II mAb (Q5/6) on the mRNA expression of genes related to monocyte and T cell activation. mRNA levels for early (early c-myc, c-fos) and late (late c-myc, N-ras, c-myb) genes involved in T cell activation were determined as well as mRNA levels for IL-1 beta, IL-6, IFN-gamma, IL-2, and IL-2R alpha. The kinetics of mRNA induction for ICAM-1 was also investigated. The results show that in T lymphocytes the expression of c-fos and early c-myc mRNA was unaffected by mAb Q5/6, whereas the c-myb and N-ras mRNA levels were strongly diminished as well as those of IL-2, IL-2R alpha, and IFN-gamma mRNA. An early increase of ICAM-1 mRNA was partially inhibited. In monocytes, a marked reduction of IL-1 beta and IL-6 mRNA was found. It is concluded that the HLA class II determinant involved in the inhibition mechanism can be engaged in the control of IL-1 beta and IL-6 mRNA levels and constitute an accessory signal up-regulating IL-2 and IL-2R alpha gene activation, through a pathway not affecting c-myc and c-fos expression.  相似文献   

14.
The growth of adherent synovial cells passaged once was studied in response to human recombinant interleukin 1 (hr IL-1) beta. Human synovial cell cultures were established from tissues obtained during therapeutic joint surgery for patients with rheumatoid arthritis (rheumatoid synovial cells, RSC) or non inflammatory rheumatic diseases (non rheumatoid synovial cells, NRSC). The effect of IL-1 beta (0.1 to 10 ng/ml) on the time course of proliferation showed that values for DNA synthesis and cell numbers in RSC cultures were higher than in NRSC cultures. Similarly, untreated control RSC cultures grew more quickly than NRSC. These results demonstrate that RSC, which are continuously stimulated by IL-1 beta produced in the rheumatoid pannus in vivo, have a higher capacity for proliferation than NRSC but are less responsive to IL-1 beta. A dose-response curve of proliferation was established 72 hrs. after the addition of IL-1 to the medium. The stimulating effect of IL-1 beta (0.001 to 10 ng/ml) was dose-dependent in both RSC and NRSC and reached a plateau at 10 ng/ml; the response of NRSC was stronger than that of RCS.  相似文献   

15.
We have investigated the value of a gene therapy approach for neuroblastoma (NB), based on retroviral transduction of the IL-1beta or TNF-alpha cytokine genes into human NB lines. Secretion of the corresponding cytokine, was demonstrated in all lines, although with considerable quantitative variations. Cytokine gene expression significantly reduced the proliferation index (p = 0.0001); this effect was associated with either terminal neuronal (one TNF-alpha line) or fibroblast-like differentiation (two IL-1beta lines), leading to growth arrest after a few weeks. Cell surface levels of CD54 and HLA class II remained unaffected, but HLA class I (p < 0.001) and CD58 expression (p = 0.01) increased on SKNSH after TNF-alpha gene transfer. Mononuclear cells from normal allogeneic donors cocultured with both IL-1beta (p < 0.001) and TNF-alpha lines (p < 0.01), showed a significant increase in the proportion of activated T cells (CD3+DR+); however, their cytotoxicity and proliferation rate remained unchanged. Immunotherapy of neuroblastoma will require identification of transduced lines in which cytokine secretion induces phenotypic changes in such a way as to augment their likely immunomodulatory properties without impeding cell growth. Because of the limited efficacy of IL-1beta or TNF-alpha gene transfer alone, further studies should focus on combination with other immunomodulatory agents, to improve their potential efficacy in neuroblastoma.  相似文献   

16.
Interleukin-1beta (IL-1beta) is a proinflammatory cytokine increased in the heart following myocardial infarction. Vascular endothelial growth factors (VEGFs) are implicated in angiogenesis due to their involvement in the recruitment and proliferation of endothelial cells. Here we studied expression of VEGFs in response to IL-1beta in rat cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of VEGF-D. cDNA array analysis indicated that IL-1beta modulates the expression of numerous angiogenesis-related genes, notably decreasing the expression of VEGF-D. RT-PCR and Western blot analyses confirmed decreased expression of VEGF-D in response to IL-1beta. IL-1beta decreased the expression of VEGF-C to a lesser extent with no effects on VEGF-A or -B. Inhibition of ERK1/2, JNKs, or PKCalpha/beta1 alone partially inhibited IL-1beta-induced VEGF-D downregulation. Concurrent inhibition of ERK1/2 or JNKs and PKCalpha/beta1 resulted in a synergistic inhibition of IL-1beta-induced decreases in VEGF-D. Inhibition of ERK1/2 partially inhibited IL-1beta-stimulated inactivation of GSK-3beta with no effect on beta-catenin levels. Inhibition of GSK-3beta using SB216763 inhibited basal VEGF-D expression. We conclude that IL-1beta downregulates VEGF-D expression in CMECs via the involvement of ERK1/2, JNKs, and PKCalpha/beta(1). This is the first report to indicate inhibition of VEGF-D gene expression in response to IL-1beta in cardiac microvascular endothelial cells, a cell type of central interest in angiogenesis.  相似文献   

17.
Sinomenine, a pure alkaloid extract from Sinomenium acutum, has anti-inflammatory and immunoregulatory functions. This study investigated the efficiency and the signalling pathways involved in the effect of sinomenine on vascular smooth muscle cell (VSMC) dedifferentiation in response to platelet-derived growth factor (PDGF)-BB stimulation and vascular injury. VSMCs were isolated from rat aorta and preincubated with sinomenine before being stimulated with PDGF-BB. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Flow cytometric analysis was performed for testing the cell cycle progression. The cell migration of VSMCs were analysed using a Transwell system. The expression of VSMC specific genes and signalling proteins were tested by Western blot. For the animal study, C57/BL6 mice were fed either normal rodent chow diets or sinomenine chow diets that supplemented with 0.09 % sinomenine (w/w) in the normal chows for 14 days before carotid artery wire injury. PDGF-BB activated the dedifferentiation of VSMCs characterised by decreased expression of SMA, Smoothelin and SM22α. However, sinomenine treatment preserved the dedifferentiation in response to PDGF-BB. The activations of mitogen-activated protein kinase extracellular signal-regulated kinases, Akt, GSK3β and STAT3 induced by PDGF-BB were also inhibited in sinomenine-treated VSMCs. In vivo evidence with wire-injured mice exhibited a reduction in neointimal area and an increase in smooth muscle-specific gene expression in the sinomenine-treated group. In this study, we found that sinomenine-suppressed VSMC phenotype switching induced by PDGF-BB in vitro and neointimal formation in vivo. Therefore, sinomenine is a potential candidate to be used in the treatment of vascular proliferative disease.  相似文献   

18.

Traumatic spinal cord injury (SCI) is a devastating condition with few efficacious drugs. Sinomenine, a bioactive alkaloid extracted from medicinal herb, has been used as a treatment of rheumatoid diseases. This present study explored the therapeutic effects of sinomenine on locomotor dysfunction and neuropathology in SCI. Our findings revealed that sinomenine mitigated neurological deficits and enhanced neuronal preservation, paralleled with a reduction of apoptosis. Also, sinomenine significantly reduced inflammatory cytokines and oxidative stress factors. We further examined erythroid-2-related factor 2 (Nrf2) nuclear translocation, which mainly controls the coordinated expression of important antioxidant and detoxification genes. An increase in Nrf2 translocation from cytoplasm to nucleus and Nrf2-mediated transactivation was observed after sinomenine administration. Knocking down Nrf2 by siRNA could counteract sinomenine-mediated anti-oxidant stress and anti-inflammation following H2O2-stimulated and LPS-stimulated PC12 cells. Together, our findings indicated that sinomenine has the potential to be an effective therapeutic agent for SCI by inhibiting inflammation and oxidative stress via Nrf2 activation.

  相似文献   

19.
Several epidemiological studies have reported that temporomandibular disorders (TMDs) are more prevalent in women than in men. It has recently been proposed that sex hormones such as estrogen, testosterone and dehydroepiandrosterone (DHEA) are involved with the pathogenesis of TMDs. Although studies have investigated the relationship between estrogen and testosterone and the restoration of TMDs, the relationship between DHEA and TMDs is unknown. The synovial tissue of the temporomandibular joint (TMJ) is made up of connective tissue with an extracellular matrix (ECM) composed of collagen and proteoglycan. One proteoglycan family, comprised of small leucine-rich repeat proteoglycans (SLRPs), was found to be involved in collagen fibril formation and interaction. In recent years, the participation of SLRPs such as lumican and fibromodulin in the internal derangement of TMJ has been suggested. Although these SLRPs may contribute to the restoration of the synovium, their effect is still unclear. The purpose of this study was to investigate the effect of DHEA, a sex hormone, on the expression of lumican and fibromodulin in human temporomandibular specimens and in cultured human TMJ fibroblast-like synovial cells in the presence or absence of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). In the in vivo study, both normal and osteoarthritic (OA) human temporomandibular synovial tissues were immunohistochemically examined. In the in vitro study, five fibroblast-like synoviocyte (FLS) cell lines were established from human TMJ synovial tissue of patients with osteoarthritis. The subcultured cells were then incubated for 3, 6, 12 or 24 h with/without IL-1beta (1 ng/mL) in the presence or absence of DHEA (10 μM). The gene expression of lumican and fibromodulin was examined using the real-time polymerase chain reaction (PCR) and their protein expression was examined using immunofluorescent staining. We demonstrated that the expression of lumican differs from that of fibromodulin in synovial tissue and furthermore, that IL-1beta induced a significant increase in lumican mRNA and immunofluorescent staining in FLS compared to cells without IL-1beta. DHEA plus IL-1beta induced a significant increase in fibromodulin, but not in lumican mRNA, compared to DHEA alone, IL-1beta alone and in the absence of DHEA and IL-1beta. In immunofluorescent staining, weaker fibromodulin staining of FLS cells was observed in cells cultured in the absence of both DHEA and IL-1beta compared to fibromodulin staining of cells cultured with DHEA alone, with DHEA plus IL-1beta, or with IL-1beta alone. These results indicate that DHEA may have a protective effect on synovial tissue in TMJ by enhancing fibromodulin formation after IL-1beta induced inflammation. DHEA enhancement of fibromodulin expression may also exert a protective effect against the hyperplasia of fibrous tissue that TGF-beta1 induces. In addition lumican and fibromodulin are differentially expressed under different cell stimulation conditions and lumican and fibromodulin may promote regeneration of the TMJ after degeneration and deformation induced by IL-1beta.Key words: Temporomandibular joint, dehydroepiandrosterone, lumican, fibromodulin, small leucine rich repeat proteoglycan  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号