首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Signaling by nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) modulates fluid transport in Drosophila melanogaster. Expression of an inducible transgene encoding Drosophila NO synthase (dNOS) increases both NOS activity in Malpighian (renal) tubules and DNOS protein in both type I (principal) and type II (stellate) cells. However, cGMP content is increased only in principal cells. DNOS overexpression results in elevated basal rates of fluid transport in the presence of the phosphodiesterase (PDE) inhibitor, Zaprinast. Direct assay of tubule cGMP-hydrolyzing phosphodiesterase (cG-PDE) activity in wild-type and dNOS transgenic lines shows that cG-PDE activity is Zaprinast sensitive and is elevated upon dNOS induction. Zaprinast treatment increases cGMP content in tubules, particularly at the apical regions of principal cells, suggesting localization of Zaprinast-sensitive cG-PDE to these areas. Potential cross talk between activated NO/cGMP and calcium signaling was assessed in vivo with a targeted aequorin transgene. Activated DNOS signaling alone does not modify either neuropeptide (CAP2b)- or cGMP-induced increases in cytosolic calcium levels. However, in the presence of Zaprinast, both CAP2b-and cGMP-stimulated calcium levels are potentiated upon DNOS overexpression. Use of the calcium channel blocker, verapamil, abolishes the Zaprinast-induced transport phenotype in dNOS-overexpressing tubules. Molecular genetic intervention in the NO/cGMP signaling pathway has uncovered a pivotal role for cell-specific cG-PDE in regulating the poise of the fluid transporting Malpighian tubule via direct effects on intracellular cGMP concentration and localization and via interactions with calcium signaling mechanisms. Malpighian tubule; cGMP; calcium; aequorin; CNG channel  相似文献   

2.
3.
The neuropeptide CAP2b stimulates fluid transport obligatorily via calcium entry, nitric oxide, and cGMP in Drosophila melanogaster Malpighian (renal) tubules. We have shown by RT-PCR that the Drosophila L-type calcium channel alpha1-subunit genes Dmca1D and Dmca1A (nbA) are both expressed in tubules. CAP2b-stimulated fluid transport and cytosolic calcium concentration ([Ca2+]i) increases are inhibited by the L-type calcium channel blockers verapamil and nifedipine. cGMP-stimulated fluid transport is verapamil and nifedipine sensitive. Furthermore, cGMP induces a slow [Ca2+]i increase in tubule principal cells via verapamil- and nifedipine-sensitive calcium entry; RT-PCR shows that tubules express Drosophila cyclic nucleotide-gated channel (cng). Additionally, thapsigargin-induced [Ca2+]i increase is verapamil sensitive. Phenylalkylamines bind with differing affinities to the basolateral and apical surfaces of principal cells in the main segment; however, dihydropyridine binds apically in the tubule initial segment. Immunocytochemical evidence suggests localization of alpha1-subunits to both basolateral and apical surfaces of principal cells in the tubule main segment. We suggest roles for L-type calcium channels and cGMP-mediated calcium influx in both calcium signaling and fluid transport mechanisms in Drosophila.  相似文献   

4.
Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.  相似文献   

5.
6.
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission efficacy and is considered the base for some forms of learning and memory. Nitric oxide (NO)-induced formation of cGMP is involved in hippocampal LTP. We have studied in hippocampal slices the effects of application of a tetanus to induce LTP on cGMP metabolism and the mechanisms by which cGMP modulates LTP. Tetanus application induced a transient rise in cGMP, reaching a maximum at 10s and decreasing below basal levels 5 min after the tetanus, remaining below basal levels after 60 min. Soluble guanylate cyclase (sGC) activity increased 5 min after tetanus and returned to basal levels at 60 min. The decrease in cGMP was due to sustained tetanus-induced increase in cGMP-degrading phosphodiesterase activity, which remained activated 60 min after tetanus. Tetanus-induced activation of PDE and decrease of cGMP were prevented by inhibiting protein kinase G (PKG). This indicates that the initial increase in cGMP activates PKG that phosphorylates (and activates) cGMP-degrading PDE, which, in turn, degrades cGMP. Inhibition of sGC, of PKG or of cGMP-degrading phosphodiesterase impairs LTP, indicating that proper induction of LTP involves transient activation of sGC and increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content. Hyperammonemia is the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including impaired intellectual function. Hyperammonemia impairs LTP in hippocampus by altering the modulation of this sGC-PKG-cGMP-degrading PDE pathway. Exposure of hippocampal slices to 1 mM ammonia completely prevents tetanus-induced decrease of cGMP by impairing PKG-mediated activation of cGMP-degrading phosphodiesterase. This impairment is responsible for the loss of the maintenance of LTP in hyperammonemia, and may be also involved in the cognitive impairment in patients with hyperammonemia and hepatic encephalopathy.  相似文献   

7.
Kerr M  Davies SA  Dow JA 《Current biology : CB》2004,14(16):1468-1474
Every living cell must detect, and respond appropriately to, external signals. The functions of intracellular second messengers, such as guanosine 3'5'-cyclic monophosphate (cGMP), adenosine 3'5'-cyclic monophosphate (cAMP), and intracellular calcium, are thus intensively studied. However, artifact-free manipulation of these messengers is problematic, and simple pharmacology may not allow selective intervention in distinct cell types in a real, complex tissue. We have devised a method by which second messenger levels can be manipulated in cells of choice using the GAL4/UAS system. By placing different receptors (rat atrial natriuretic peptide [ANP] receptor and Drosophila serotonin receptors [5HT(Dro7) and 5HT(Dro1A)]) under UAS control, they can be targeted to arbitrary defined populations of cells in any tissue of the fly, and second messenger levels can be manipulated simply by adding the natural ligand. The potential of the system is illustrated in the Drosophila renal (Malpighian) tubule, where each receptor was shown to stimulate fluid secretion, to act through its cognate second messenger, and to be blocked by appropriate pharmacological antagonists. The results uncovered a new role for cGMP signaling in tubule and also demonstrate the utility of the tubule as a possible in vivo test bed for novel receptors, ligands, or agonists/antagonists.  相似文献   

8.
cGMP-degrading pathways have received little attention in the context of angiogenesis. In the present study we set out to determine whether cGMP-specific phosphodiesterase 5 (PDE5) inhibition affects new blood vessel growth. Incubation of chicken chorioallantoic membranes (CAMs) in vivo with sildenafil increased vascular length in a dose-dependent manner. Moreover, incubation of cultured endothelial cells (ECs) with the PDE5 inhibitor promoted proliferation, migration, and organization into tube-like structures. The effects of sildenafil on the angiogenesis-related properties of EC could be blocked by pre-treatment with the soluble guanylyl cyclase (sGC) inhibitor ODQ or the protein kinase G (PKG) I inhibitor DT-3. In addition, over-expression of sGC in EC led to an enhanced growth and migratory response to sildenafil. To study the signaling pathways implicated in the sildenafil-stimulated angiogenic responses we determined the phosphorylation status of mitogen-activated protein kinase (MAPK) members. Incubation of cells with sildenafil increased both extracellular signal regulated kinase 1/2 (ERK1/2) and p38 phosphorylation in a time-dependent manner. Inhibition of MEK by PD98059 and p38 with SB203580 blocked sildenafil-induced proliferation and migration, respectively, suggesting that these MAPK members are downstream of PDE5 and mediate the angiogenic effects of sildenafil. PDE5 inhibitors could, thus, be used in disease states where neo-vessel growth is desired.  相似文献   

9.
Calcium signaling is an important mediator of neuropeptide-stimulated fluid transport by Drosophila Malpighian (renal) tubules. We demonstrate the first epithelial role, in vivo, for members of the TRP family of calcium channels. RT-PCR revealed expression of trp, trpl, and trpγ in tubules. Use of antipeptide polyclonal antibodies for TRP, TRPL, and TRPγ showed expression of all three channels in type 1 (principal) cells in the tubule main segment. Neuropeptide (CAP2b)-stimulated fluid transport rates were significantly reduced in tubules from the trpl302 mutant and the trpl;trp double mutant, trpl302;trp343. However, a trp null, trp343, had no impact on stimulated fluid transport. Measurement of cytosolic calcium concentrations ([Ca2+]i) in tubule principal cells using an aequorin transgene in trp and trpl mutants showed a reduction in calcium responses in trpl302. Western blotting of tubule preparations from trp and trpl mutants revealed a correlation between TRPL levels and CAP2b-stimulated fluid transport and calcium signaling. Rescue of trpl302 with a trpl transgene under heat-shock control resulted in a stimulated fluid transport phenotype that was indistinguishable from wild-type tubules. Furthermore, restoration of normal stimulated rates of fluid transport by rescue of trpl302 was not compromised by introduction of the trp null, trp343. Thus, in an epithelial context, TRPL is sufficient for wild-type responses. Finally, a scaffolding component of the TRPL/TRP-signaling complex, INAD, is not expressed in tubules, suggesting that inaD is not essential for TRPL/TRP function in Drosophila tubules.  相似文献   

10.
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.  相似文献   

11.
The expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5, was studied in intestinal cells. Both PDE5A1 and PDE5A2 splice forms were cloned from the cDNA prepared from human colonic T84 cells, and PDE5 activity was dependent on increases in intracellular cGMP levels which correlated with increased phosphorylation of the enzyme. PDE5 expression was monitored in different regions of the gastrointestinal tract and nearly 50% of the phosphodiesterase activity in the duodenum, jejunum, ileum and colon was inhibited by sildenafil citrate. Administration of the stable toxin to intestinal loops resulted in activation of PDE5. Inhibition of PDE5 by sildenafil citrate led to fluid accumulation in loops, suggesting a possible explanation for the side effect of diarrhoea observed in individuals administered sildenafil citrate. Our results therefore represent the first study on the expression and regulation of PDE5 in intestinal tissue, and indicate that mechanisms to control its activity may have important consequences in intestinal physiology.  相似文献   

12.
One of the key mediators of penile erectile function is nitric oxide (NO), which activates soluble guanylyl cyclase within the smooth muscle of erectile tissue and stimulates the production of cGMP. In addition to synthesis by cyclases, intracellular cGMP concentrations are tightly regulated by phosphodiesterases, which hydrolyze and inactivate cyclic nucleotides. In this study, we compared the inhibition of cGMP hydrolysis by vardenafil and sildenafil; two inhibitors selective for phosphodiesterase type 5 (PDE5). Vardenafil is a novel, high affinity PDE5 inhibitor currently under clinical development. In soluble extracts of human corpus cavernosum smooth muscle cells, vardenafil and sildenafil effectively inhibited cGMP hydrolysis at substrate concentrations of 1, 5 and 10 microM cGMP. The IC50 values for vardenafil were approximately 5-fold lower than for sildenafil at the substrate concentrations tested. Dixon plot analyses of the inhibition data demonstrated that vardenafil had a smaller inhibition constant (Ki = 4.5 nM) than sildenafil (Ki = 14.7 nM) in the same cellular extracts. In intact cells, 10 microM of the nitric oxide donor sodium nitroprusside resulted in a minimal (17%) increase in cGMP, relative to basal levels (321 +/- 65 fmol/mg prot). Treatment of cells with 10, 50 or 100 nM vardenafil, in the presence of 10 microM sodium nitroprusside, elevated cGMP levels in a dose dependent fashion, from 63% to 137% of basal levels. Equimolar concentrations of sildenafil also caused dose dependent increases in intracellular cGMP, but to a lesser extent (27-60%). These observations suggest that vardenafil is a more potent PDE5 inhibitor, than sildenafil in vitro. The more pronounced increase of cGMP in the presence of NO in intact cells suggests that vardenafil will be effective at lower doses than sildenafil under clinical conditions.  相似文献   

13.
Sildenafil is the first oral PDE5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. In the present study, we investigated the effect of sildenafil on adipogenesis in 3T3L1 preadipocytes. Treatment with sildenafil for 8 days significantly promoted adipogenesis characterized by increased lipid droplet and triglyceride content in 3T3L1 cells. Meanwhile, sildenafil induced a pronounced up-regulation of the expression of adipocyte-specific genes, such as aP2 and GLUT4. The results by RT-PCR and Western blotting further showed that sildenafil increased the sequential expression of C/EBPβ, PPARγ and C/EBPα. Additionally, we found that the other two PDE5 inhibitors (vardenafil and tadalafil) and the cGMP analog 8-pCPT-cGMP also increased adipogenesis. Likewise, 8-pCPT-cGMP could up-regulate the expression of adipogenic and adipocyte-specific genes. Importantly, the PKG inhibitor Rp-8-pCPT-cGMP was able to inhibit both sildenafil and 8-pCPT-cGMP-induced adipogenesis. Furthermore, sildenafil promoted basal and insulin-mediated glucose uptake in 3T3L1 cells, which was counteracted by Rp-8-pCPT-cGMP. These results indicate that sildenafil could promote adipogenesis accompanied by increased glucose uptake through a PKG pathway at least partly.  相似文献   

14.
Cyclic nucleotides are recognized as critical mediators of many renal functions, including solute transport, regulation of vascular tone, proliferation of parenchymal cells, and inflammation. Although most studies have linked elevated cAMP levels to activation of protein kinase A, cAMP can also directly activate cyclic nucleotide gated ion channels and can signal through activation of GTP exchange factors. Cyclic AMP signaling is highly compartmentalized through plasma membrane localization of adenylyl cyclase and expression of scaffolding proteins that anchor protein kinase A to specific intracellular locations. Cyclic nucleotide levels are largely regulated through catabolic processes directed by phosphodiesterases (PDEs). The PDE superfamily is large and complex, with over 60 distinct isoforms that preferentially hydrolyze cAMP, cGMP, or both. PDEs contribute to compartmentalized cyclic nucleotide signaling. The unique cell- and tissue-specific distribution of PDEs has prompted the development of highly specific PDE inhibitors to treat a variety of inflammatory conditions. In experimental systems, PDE inhibitors have been employed to demonstrate functional compartmentalization of cyclic nucleotide signaling in the kidney. For example, mitogenesis in glomerular mesangial cells and normal tubular epithelial cells is negatively regulated by an intracellular pool of cAMP that is metabolized by PDE3, but not by other PDEs. In Madin-Darby canine kidney cells, an in vitro model of polycystic kidney disease, an intracellular pool of cAMP directed by PDE3 stimulates mitogenesis. In mesangial cells, an intracellular pool of cAMP directed by PDE4 inhibits reactive oxygen species and expression of the potent proin-flammatory cytokine monocyte chemoattractant protein 1. An intracellular pool of cGMP directed by PDE5 regulates solute transport. PDE5 inhibitors ameliorate renal injury in a chronic renal disease model. In this overview, we highlight recent studies to define relationships between PDE expression and renal function and to provide evidence that PDE inhibitors may be effective agents in treating chronic renal disease.  相似文献   

15.
16.
This study showed that four factors which stimulate transepithelial fluid secretion and inorganic ion transport across the main segment of the Malpighian tubules of Drosophila melanogaster also stimulate transepithelial secretion of the prototypical organic cation tetraethylammonium (TEA). TEA fluxes across the Malpighian tubules and gut were measured using a TEA-selective self-referencing (TEA-SeR) microelectrode. TEA flux across isolated Malpighian tubules was also measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by tubules set up in a modified Ramsay assay. TEA flux was stimulated by the intracellular second messengers cAMP and cGMP, which increase the lumen-positive transepithelial potential (TEP), and also by tyramine and leucokinin-I (LK-I), which decrease TEP. The largest increase was measured in response to 1 micromol l-1 LK-I which increased transepithelial TEA flux by 72%. TEA flux in the lower tubule was stimulated slightly (13%) by 1 micromol l-1 tyramine but not by any of the other factors. TEA flux across the midgut was unaffected by cAMP, cGMP or tyramine. This is the first study to demonstrate the effects of insect diuretic factors and second messengers on excretion of organic cations.  相似文献   

17.
cGMP-specific, cGMP-binding phosphodiesterase (PDE5) regulates such physiological processes as smooth muscle relaxation and neuronal survival. PDE5 contains two N-terminal domains (GAF A and GAF B), but the functional roles of these domains have not been determined. Here we show that recombinant PDE5 is activated directly upon cGMP binding to the GAF A domain, and this effect does not require PDE5 phosphorylation. PDE5 exhibited time- and concentration-dependent reversible activation in response to cGMP, with the highest activation (9- to 11-fold) observed at low substrate concentrations (0.1 micro M cGMP). A monoclonal antibody directed against GAF A blocked cGMP binding, prevented PDE5 activation and decreased basal activity, revealing that PDE5 in its non-activated state has low intrinsic catalytic activity. Activated PDE5 showed higher sensitivity towards sildenafil than non-activated PDE5. The stimulatory effect of cGMP binding on the catalytic activity of PDE5 suggests that this mechanism of enzyme activation may be common among other GAF domain-containing proteins. The data also suggest that development of agonists and antagonists of PDE5 activity based on binding to this site might be possible.  相似文献   

18.
In the absence of detergent, approximately 80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; approximately 85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity approximately 100% and calmodulin-stimulated approximately 400-500%. Although 1% Lubrol readily solubilized these PDE activities, approximately 75% of the cAMP PDE activity (0.5 microM [3H]cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. After solubilization and purification by chromatography on cGMP-agarose, heparin-agarose, and Superose 6, the brain particulate cGMP-stimulated PDE cross-reacted with antibody raised against a cGMP-stimulated PDE purified from calf liver supernatant. The brain enzyme exhibited a slightly greater subunit Mr than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V8 protease produced several peptides of similar size, as well as at least two distinct fragments of approximately 27 kDa from the brain and approximately 23 kDa from the liver enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Developmental changes in Malpighian tubule cell structure.   总被引:1,自引:0,他引:1  
J S Ryerse 《Tissue & cell》1979,11(3):533-551
Structural changes which occur in the Malpighian tubule yellow region primary cells during larval-pupal-adult development of the skipper butterfly Calpodes ethlius are described. The developmental changes in cell structure are correlated with functional changes in fluid transport (Ryerse, 1978a) in a way which supports osmotic gradient models of fluid secretion. Larval tubules are specialized for fluid secretion with deep basal infolds and elongate mitochondria-containing apical microvilli which provide channels in which osmotic gradients could be set up. The Malpighian tubule cells are extensively remodelled at pupation when fluid transport is switched off, but they persist intact through metamorphosis. At this time, the basement membrane doubles in thickness, the mitochondria are retracted from the microvilli and are isolated for degradation in autophagic vacuoles, and both apical and basal plasma membranes are internalized via coated vesicles for degradation in multivesicular bodies, which results in the shortening of the microville and the disappearance of the basal infolds. Mitochondria are re-inserted into the microvilli, and the basal infolds re-form in pharate adult stage Malpighian tubules when fluid secretion resumes. Adult tubules are similar in general structure to larval tubules and contain mitochondria in the microvilli and basal infolds. However, they differ from larval tubules in that they are capable of very rapid fluid transport, have a reduced tubule diameter and tubule wall thickness, a much thicker basement membrane and peripherally associated tracheoles. Mineral concretions of calcium phosphate accumulate in larval tubules, persist through metamorphosis and decline in number in adults, suggesting they serve some anabolic role.  相似文献   

20.
Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic melanoma cells, we investigated the effects of hypergravity on the regulation of cGMP levels in cultured human melanocytes and in melanoma cell lines with different metastatic potentials. Hypergravity was produced by horizontal centrifugal acceleration. Here we report that long-term application of hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured melanocytes and in non-metastatic melanoma cells in the presence of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX), a non-selective phosphodiesterase (PDE) inhibitor. Under these conditions, cAMP synthesis and melanin production were up-regulated in pigmented melanocytes and non-metastatic melanoma cells. Hypergravity also stimulated cGMP transport in the presence of 1 microM trequinsin, an inhibitor of cGMP-binding PDE (PDE5) and of transport by multidrug resistance proteins MRP4/5, whereas 50 microM trequinsin partially inhibited cGMP transport. Transport was further inhibited by probenecid, an inhibitor of endogenous non-selective transporters as well as of MRP4/5 and by cycloheximide as an inhibitor of de novo protein synthesis. In contrast, hypergravity did not affect cGMP efflux in metastatic melanoma cells, which might be related to an up-regulated cGMP efflux at 1 g. The results of the present study indicate that hypergravity may stimulate cGMP efflux in melanocytes and in non-metastatic melanoma cells most probably by an enhanced expression of endogenous transporters and/or MRP4/5. Thus, an altered acceleration vector may induce signaling events in melanocytic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号