首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.  相似文献   

3.
Intercellular exchange of MHC molecules has been reported between many cells, including professional and nonprofessional APCs. This phenomenon may contribute to T cell immunity to pathogens. In this study, we addressed whether the transfer of MHC class I:peptide complexes between cells plays a role in T cell responses and compare this to conventional cross-presentation. We observed that dsRNA-matured bone marrow-derived dendritic cells (BMDCs) acquired peptide:MHC complexes from other BMDCs either pulsed with OVA(257-264) peptide, soluble OVA, or infected with a recombinant adenovirus expressing OVA. In addition, BMDCs were capable of acquiring MHC:peptide complexes from epithelial cells. Spleen-derived CD8alpha(+) and CD8alpha(-) dendritic cells (DCs) also acquired MHC:peptide complexes from BMDCs pulsed with OVA(257-264) peptide. However, the efficiency of acquisition by these ex vivo derived DCs is much lower than acquisition by BMDC. In all cases, the acquired MHC:peptide complexes were functional in that they induced Ag-specific CD8(+) T cell proliferation. The efficiency of MHC transfer was compared with cross-presentation for splenic CD8alpha(+) and CD8alpha(-) as well as BMDCs. CD8alpha(+) DCs were more efficient at inducing T cell proliferation when they acquired Ag via cross-presentation, the opposite was observed for BMDCs and splenic CD8alpha(-) DCs. We conclude from these observations that the relative efficiency of MHC transfer vs cross-presentation differs markedly between different DC subsets.  相似文献   

4.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

5.
Dendritic cells (DC) are able to capture, process, and present exogenous Ag to CD8(+) T lymphocytes through MHC class I, a process referred to as cross-presentation. In this study, we demonstrate that CD103(+) (CD11c(high)CD11b(low)) and CD103(-) (CD11c(int)CD11b(high)) DC residing in the lung-draining bronchial lymph node (brLN) have evolved to acquire opposing functions in presenting innocuous inhaled Ag. Thus, under tolerogenic conditions, CD103(-) DC are specialized in presenting innocuous Ag to CD4(+) T cells, whereas CD103(+) DC, which do not express CD8alpha, are specialized in presenting Ag exclusively to CD8(+) T cells. In CCR7-deficient but not in plt/plt mice, Ag-carrying CD103(+) DC are largely absent in the brLN, although CD103(+) DC are present in the lung of CCR7-deficient mice. As a consequence, adoptively transferred CD8(+) T cells can be activated under tolerizing conditions in plt/plt but not in CCR7-deficient mice. These data reveal that CD103(+) brLN DC are specialized in cross-presenting innocuous inhaled Ag in vivo. Because these cells are largely absent in CCR7(-/-) mice, our findings strongly suggest that brLN CD103(+) DC are lung-derived and that expression of CCR7 is required for their migration from the lung into its draining lymph node.  相似文献   

6.
7.
Cross-presentation allows the processing of Ags from donor cells into the MHC class I presentation pathway of dendritic cells (DCs). This is important for the generation of cytotoxic T cell immunity and for induction of self tolerance. Apoptotic cells are reported to be efficient targets for cross-presentation, and in vitro studies using human DCs have implicated CD36 in their capture. In support of a role for CD36 in cross-presentation, we show that this molecule is differentially expressed by CD8(+) splenic DCs, which previously have been identified as responsible for cross-presentation in the mouse. Three different cross-presentation models were examined for their dependence on CD36. These included cross-priming to OVA-coated spleen cells and cross-tolerance to OVA transgenically expressed in the pancreatic islet beta cells under constitutive conditions or during beta cell destruction. In these models, CD36 knockout DCs were equivalent to wild-type DCs in their capacity to cross-present either foreign or self Ags, indicating that CD36 is not essential for cross-presentation of cellular Ags in vivo.  相似文献   

8.
Their eponymous morphology and unique ability to activate naive T cells are hallmark features of dendritic cells (DCs). Specific properties of the actin cytoskeleton may define both characteristics. In search for regulators that coordinate DC phenotype and function, we observed strongly increased expression of the actin-remodeling GTPases Cdc42 and Rac1 during DC development from human stem cells. Cdc42 and Rac1 are constitutively active in immature DCs, and their activity is further up-regulated by maturational stimuli such as LPS or CD40L. Activation of Rac1 is associated with its rapid recruitment into lipid rafts. Cdc42 is not recruited into rafts, but readily activated by raft-associated moieties. The functional interplay of rafts, GTPases, and cortical actin is further shown by GTPase activation and actin remodeling after pharmacological disruption of lipid rafts and by the loss of the actin-based DC morphology by transfection of dominant-negative Cdc42 and Rac1. Both Cdc42 and Rac1 also control the transport of essential immunostimulatory molecules to the DC surface. Transfection with dominant-negative GTPases led to reduced surface expression of MHC class I and CD86. Consecutively, DCs display a reduced stimulatory capacity for CD8(+) T cells, whereas MHC class II-dependent stimulation of CD4(+) T cells remains unperturbed. We conclude that Cdc42 and Rac1 signaling controls DC morphology and conditions DCs for efficient CD8(+) T cell stimulation.  相似文献   

9.
Dendritic cells (DCs) are critical in initiating immune responses by cross-priming of tumor Ags to T cells. Previous results showed that NK cells inhibited DC-mediated cross-presentation of tumor Ags both in vivo and in vitro. In this study, enhanced Ag presentation was observed in draining lymph nodes in TRAIL(-/-) and DR5(-/-) mice compared with that of wild-type mice. NK cells inhibit DC cross-priming of tumor Ags in vitro, but not direct presentation of endogenous Ags. NK cells lacking TRAIL, but not perforin, were not able to inhibit DC cross-priming of tumor Ags. DCs that lack expression of TRAIL receptor DR5 were less susceptible to NK cell-mediated inhibition of cross-priming, and cross-linking of DR5 receptor led to reduced generation of MHC class I-Ag peptide complexes, followed by attenuated cross-priming of CD8(+) T cells. In addition, key molecules involved in the TRAIL/DR5 pathway during DC/NK cell interactions were determined. In summary, these data indicate a novel alternative pathway for DC/NK cell interactions in antitumor immunity and may reflect homeostasis of both DCs and NK cells for regulation of CD8(+) T cell function in physiological conditions.  相似文献   

10.
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8(+) T cells in host defense. However, although it has been shown that memory CD8(+) T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8(+) T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8(+) T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α(-) DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8(+) T cell effectors with cytolytic function. As CD8α(-) DCs are poor cross-presenters, this may represent the main mechanism by which CD8α(-) DCs present exogenously encountered Ag to CD8(+) T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.  相似文献   

11.
Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.  相似文献   

12.
The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.  相似文献   

13.
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.  相似文献   

14.
Alloantigen expression on host APCs is essential to initiate graft-vs-host disease (GVHD); however, critical APC subset remains to be elucidated. We compared the ability of dendritic cells (DCs) and B cells to initiate acute GVHD by an add-back study of MHC class II-expressing APCs (II(+/+)) into MHC class II-deficient (II(-/-)) mice that were resistant to CD4-dependent GVHD. Injection of host-derived, but not donor-derived, II(+/+) DCs or host-derived II(+/+) B cells, was sufficient to break GVHD resistance of II(-/-) mice and induced lethal acute GVHD. By contrast, host-derived II(+/+) B cells, both naive and LPS stimulated, failed to induce activation or tolerance of donor CD4(+) T cells. Similarly, in a model of CD8-dependent GVHD across MHC class I mismatch injection of allogeneic DCs, but not B cells, induced robust proliferation of donor CD8(+) T cells and broke GVHD resistance of chimeric recipients in which APCs were syngeneic to donors. These results demonstrate that host-derived DCs are critical in priming donor CD4(+) and CD8(+) T cells to cause GVHD, and selective targeting of host DCs may be a promising strategy to prevent GVHD.  相似文献   

15.
The FcγRs found on macrophages (Ms) and dendritic cells (DCs) efficiently facilitate the presentation or cross-presentation of immune-complexed Ags to T cells. We found that the MHC class I-related neonatal FcR for IgG (FcRn) in both Ms and DCs failed to have a strong effect on the cross-presentation of immune complex (IC) OVA Ag to CD8(+) T cells. Interestingly, endosomal FcRn enhanced the presentation of the monomeric OVA-IC to CD4(+) T cells robustly, whereas FcRn in phagosomes exerted distinctive effects on Ag presentation between Ms and DCs. The presentation of phagocytosed OVA-ICs to CD4(+) T cells was considerably enhanced on wild-type versus FcRn-deficient Ms, but was not affected in FcRn-deficient DCs. This functional discrepancy was associated with the dependence of IgG-FcRn binding in an acidic pH. Following phagocytosis, the phagosomal pH dropped rapidly to <6.5 in Ms but remained in the neutral range in DCs. This disparity in pH determined the rate of degradation of phagocytosed ICs. Thus, our findings reveal that FcRn expression has a different effect on Ag processing and presentation of ICs to CD4(+) T cells in the endosomal versus phagosomal compartments of Ms versus DCs.  相似文献   

16.
Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was ∼300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.  相似文献   

17.
Dendritic cells (DCs) use cellular pathways collectively referred to as cross-presentation to stimulate CD8(+) T cells with peptide Ags derived from internalized, exogenous Ags. We have recently reported that DCs rely on aminoterminal trimming of cross-presented peptides by insulin-responsive aminopeptidase (IRAP), an enzyme localized in a regulated endosomal storage compartment. Considering a report contending that this role is limited to inflammatory DCs (Segura et al. 2009. Proc. Natl. Acad. Sci. USA 106: 20377-20381), in this study, we examined the role of IRAP in steady-state DC subpopulations. Steady-state conventional DCs (cDCs) and plasmacytoid DCs expressed similar amounts of IRAP. IRAP colocalized with the endosomal markers Rab14 and syntaxin 6, both known to be associated with regulated endosomal storage compartments, in CD8(+) and CD8(-) cDCs-however, to a greater extent in the former population. Likewise, IRAP recruitment to phagosomes was significantly stronger in CD8(+) DCs. IRAP deficiency compromised cross-presentation of soluble and particulate Ag by both CD8(+) and CD8(-) cDCs, again with a stronger effect in the former population. Thus, the requirement of IRAP in cross-presentation extends to steady-state cDCs. Moreover, these data suggest that increased recruitment of an IRAP(+)/Rab14(+) compartment to Ag-containing vesicles contributes to the superior cross-presentation efficacy of CD8(+) cDCs.  相似文献   

18.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

19.
It has been demonstrated that CD4(+) T cells require Ag persistence to achieve effective priming, whereas CD8(+) T cells are on "autopilot" after only a brief exposure. This finding presents a disturbing conundrum as it does not account for situations in which CD8(+) T cells require CD4(+) T cell help. We used a physiologic in vivo model to study the requirement of Ag persistence for the cross-priming of minor histocompatibility Ag-specific CD8(+) T cells. We report inefficient cross-priming in situations in which male cells are rapidly cleared. Strikingly, the failure to achieve robust CD8(+) T cell activation is not due to a problem with cross-presentation. In fact, by providing "extra help" in the form of dendritic cells (DCs) loaded with MHC class II peptide, it was possible to achieve robust activation of CD8(+) T cells. Our data suggest that the "licensing" of cross-presenting DCs does not occur during their initial encounter with CD4(+) T cells, thus accounting for the requirement for Ag persistence and suggesting that DCs make multiple interactions with CD8(+) T cells during the priming phase. These findings imply that long-lived Ag is critical for efficient vaccination protocols in which the CD8(+) T cell response is helper-dependent.  相似文献   

20.
Although the development of an acidic tissue environment or acidosis is a hallmark of inflammatory processes, few studies analyze the effect of extracellular pH on immune cells. We have previously shown that exposure of murine dendritic cells (DCs) to pH 6.5 stimulates macropinocytosis and cross-presentation of extracellular Ags by MHC class I molecules. We report that the transient exposure of human DCs to pH 6.5 markedly increases the expression of HLA-DR, CD40, CD80, CD86, CD83, and CCR7 and improves the T cell priming ability of DCs. Incubation of DCs at pH 6.5 results in the activation of the PI3K/Akt and the MAPK pathways. Using specific inhibitors, we show that the maturation of DCs induced by acidosis was strictly dependent on the activation of p38 MAPK. DC exposure to pH 6.5 also induces a dramatic increase in their production of IL-12, stimulating the synthesis of IFN-gamma, but not IL-4, by Ag-specific CD4(+) T cells. Interestingly, we find that suboptimal doses of LPS abrogated the ability of pH 6.5 to induce DC maturation, suggesting a cross-talk between the activation pathways triggered by LPS and extracellular protons in DCs. We conclude that extracellular acidosis in peripheral tissues may contribute to the initiation of adaptive immune responses by DCs, favoring the development of Th1 immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号