共查询到20条相似文献,搜索用时 15 毫秒
1.
D. H. Steele 《Hydrobiologia》1991,223(1):27-34
The oostegites of amphipods attached to peraeopods 2–5 are of two main types — broad with relatively short marginal setae and narrow with long marginal setae. Broad oostegites are found in other peracarids and are considered the primitive type. Amphipods with broad oostegites tend to have smaller eggs than those with narrow oostegites. It is concluded that following the evolution of the major amphipod groups, the oostegites were modified as egg sizes have changed as part of the reproductive strategies of the species within these groups. 相似文献
2.
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed. 相似文献
3.
Biomineralization is widespread among photosynthetic organisms in the ocean, in inland waters and on land. The most quantitatively important biogeochemical role of land plants today in biomineralization is silica deposition in vascular plants, especially grasses. Terrestrial plants also increase the rate of weathering, providing the soluble substrates for biomineralization on land and in water bodies, a role that has had global biogeochemical impacts since the Devonian. The dominant photosynthetic biomineralizers in today's ocean are diatoms and radiolarians depositing silica and coccolithophores and foraminifera depositing calcium carbonate. Abiotic precipitation of silica from supersaturated seawater in the Precambrian preceded intracellular silicification dominated by sponges, then radiolarians and finally diatoms, with successive declines in the silicic acid concentration in the surface ocean, resulting in some decreases in the extent of silicification and, probably, increases in the silicic acid affinity of the active influx mechanisms. Calcium and bicarbonate concentrations in the surface ocean have generally been supersaturating with respect to the three common calcium carbonate biominerals through geological time, allowing external calcification as well as calcification in compartments within cells or organisms. The forms of calcium carbonate in biominerals, and presumably the evolution of the organisms that produce them, have been influenced by abiotic variations in calcium and magnesium concentrations in seawater, and calcium carbonate deposition has probably also been influenced by carbon dioxide concentration whose variations are in part biologically determined. Overall, there has been less biological feedback on the availability of substrates for calcification than is the case for silicification. 相似文献
4.
This study presents a quantitative partitioning of the variance infloristic data from grazed semi-natural vegetation of summer farms inRøldal, western Norway. The data consist of 189 taxa recorded in 1074-m2 sample plots within 10 summer farms with differentland-use histories. Thirty-five environmental variables were recorded,includingaltitude, slope, radiation, geology, soil chemistry, and past and presentland-use. A series of (partial) canonical correspondence analyses (CCAs) wereused to partition the total variation into within-farm and between-farmcomponents, and to investigate the explanatory power of different groups ofenvironmental and land-use variables at the two scales. The results show that:(1) although local gradients are of overriding importance for floristiccomposition, landscape-scale processes also contribute significantly to theobserved patterns; (2) the measured land-use and environmental factors accountfor comparable amounts of compositional variance at the two scales; and (3)evenif the relative contributions of the two classes of explanatory variables arecomparable, details differ, showing that broad-scale environmental and land-usepatterns are not just scaled-up versions of the fine-scale patterns or viceversa. These results support a multi-process view of vegetation patterns. 相似文献
5.
Michal Pyzik Eve-Marie Gendron-Pontbriand Nassima Fodil-Cornu Silvia M. Vidal 《Mammalian genome》2011,22(1-2):6-18
Cytomegaloviruses (CMV) are ubiquitous, opportunistic DNA viruses that have mastered the art of immune evasion through their ability to mimic host proteins or to inhibit antiviral responses. The study of the host response against CMV infection has illuminated many facets of the complex interaction between host and pathogen. Here, we review evidence derived from the animal models and human studies that supports the central role played by innate immune receptors in the recognition of virus infection and their participation in the many layers of defense. 相似文献
6.
Leaf respiration continues in the light but at a reduced rate. This inhibition is highly variable, and the mechanisms are poorly known, partly due to the lack of a formal model that can generate testable hypotheses. We derived an analytical model for non‐photorespiratory CO2 release by solving steady‐state supply/demand equations for ATP, NADH and NADPH, coupled to a widely used photosynthesis model. We used this model to evaluate causes for suppression of respiration by light. The model agrees with many observations, including highly variable suppression at saturating light, greater suppression in mature leaves, reduced assimilatory quotient (ratio of net CO2 and O2 exchange) concurrent with nitrate reduction and a Kok effect (discrete change in quantum yield at low light). The model predicts engagement of non‐phosphorylating pathways at moderate to high light, or concurrent with processes that yield ATP and NADH, such as fatty acid or terpenoid synthesis. Suppression of respiration is governed largely by photosynthetic adenylate balance, although photorespiratory NADH may contribute at sub‐saturating light. Key questions include the precise diel variation of anabolism and the ATP : 2e‐ ratio for photophosphorylation. Our model can focus experimental research and is a step towards a fully process‐based model of CO2 exchange. 相似文献
7.
The relation between functional traits and abundance of species has the potential to provide evidence on the mechanisms that
structure local ecological communities. The niche-limitation/limiting-similarity hypothesis, derived from MacArthur and Levins’
original concept, predicts that species that are similar to others in terms of functional traits will suffer greater competition
and hence be less abundant. On the other hand, the environment-filtering/habitat-optimum hypothesis predicts that groups of species with functional
traits that are close to the optimum for that environment, and are therefore similar to other species, will be more abundant. We propose a new niche-assembly model for predicting the relative abundance of species in communities from their
functional traits, which can detect the patterns that would be expected from either of these hypotheses. The model was fitted
to eight plant communities sampled in the Lake Ohau district of New Zealand. For seven of the sites, the patterns could not
be distinguished from that expected under a null model. However, in one site there was highly significant departure from the
null model in the direction expected from the niche-limitation hypothesis. The site was probably the most productive of those
examined. It is possible that competition for light rather than belowground resources, or faster recovery from disturbance,
allowed greater predictability. Surprisingly, the predictability was seen when just the presences of a species’ neighbours
in trait space were taken into account, but not when the potential effects of those neighbours were weighted by their abundance.
For three of the four model types, the effects of species on each other were consistently negative: a significant trend. These
results contradict the various neutral models of ecological communities. 相似文献
8.
Eleanor O'Brien 《Botanical journal of the Linnean Society. Linnean Society of London》2013,173(2):290-302
Understanding how the scale of pollen transfer determines the outcome of matings is important evolutionarily and a key issue in restoration ecology. We tested the effects of pollen transfer distance for the self‐incompatible shrub Grevillea sphacelata using (1) open pollination and transfer among (2) near neighbours, (3) neighbouring subpopulations and (4) populations separated by c. 4 km. We used AFLP markers to test for evidence of genetic differentiation within and among populations. Patterns of seed initiation suggest that open pollinated flowers were pollen limited, although in one subpopulation open seed set was greater than that achieved with pollen from near neighbours or other subpopulations. We detected no other effects of pollen source on seed initiation or seed and seedling development. In contrast, our genetic survey revealed significant spatial autocorrelation to 5 m, moderate differentiation of populations separated by up to 4 km and significant isolation by distance > 16 km. Our data suggest that, although dispersal of pollen may typically be localized, gene flow prevents localized adaptation or co‐adaptation and we detected no effects of inbreeding depression. In a restoration context, our results imply that movement of seed between populations separated by 4 km will not have detrimental consequences, despite significant differentiation at neutral genetic markers, and may be beneficial in maintaining genetic diversity and evolutionary potential. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 290–302. 相似文献
9.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species. 相似文献
10.
Muthiah Subramanian Sachin Yalagudri Daljeet Kaur Saggu Vickram Vignesh Rangaswamy Calambur Narasimhan 《Indian pacing and electrophysiology journal》2021,21(3):169-173
A 40 year old man with frequent PVCs with two different morphologies was referred for catheter ablation. Although initial mapping in the RVOT revealed fragmented potentials 20ms earlier than PVC2 onset with a good pace map score, ablation at this site was unsuccessful. Subsequent mapping in the LCC/NCC junction revealed that local ventricular activation preceded QRS onset by 30 and 28 ms for PVC1 and PVC2, respectively. Altering the pacing output at this site produced QRS morphologies similar to PVC1(low output,6mA) and PVC2(high output,15mA) with better pace map scores compared to RVOT. During high-output pacing, there was an increase in stim-QRS latency with decremental conduction. Ablation at this site was successful and suppressed both PVCs. 相似文献
11.
Ainsworth EA Rogers A Leakey AD Heady LE Gibon Y Stitt M Schurr U 《Journal of experimental botany》2007,58(3):579-591
Increases in growth at elevated [CO2] may be constrained by a plant's ability to assimilate the nutrients needed for new tissue in sufficient quantity to match the increase in carbon fixation and/or the ability to transport those nutrients and carbon in sufficient quantity to growing organs and tissues. Analysis of metabolites provides an indication of shifts in carbon and nitrogen partitioning due to rising atmospheric [CO2] and can help identify where bottlenecks in carbon utilization occur. In this study, the carbon and nitrogen balance was investigated in growing and fully expanded soybean leaves exposed to elevated [CO2] in a free air CO2 enrichment experiment. Diurnal photosynthesis and diurnal profiles of carbon and nitrogen metabolites were measured during two different crop growth stages. Diurnal carbon gain was increased by c. 20% in elevated [CO2] in fully expanded leaves, which led to significant increases in leaf hexose, sucrose, and starch contents. However, there was no detectable difference in nitrogen-rich amino acids and ureides in mature leaves. By contrast to mature leaves, developing leaves had high concentrations of ureides and amino acids relative to low concentrations of carbohydrates. Developing leaves at elevated [CO2] had smaller pools of ureides compared with developing leaves at ambient [CO2], which suggests N assimilation in young leaves was improved by elevated [CO2]. This work shows that elevated [CO2] alters the balance of carbon and nitrogen pools in both mature and growing soybean leaves, which could have down-stream impacts on growth and productivity. 相似文献
12.
Geographical variation in reproductive biology is obscured by the species problem: a new record of brooding in Porites cylindrica,or misidentification? 下载免费PDF全文
Little is known about the reproductive biology of corals from the Philippines, despite this archipelago being at the center of coral reef biodiversity. Here, we report on the reproductive biology of a branching poritid species provisionally identified as Porites cf. cylindrica in the Bolinao‐Anda reef complex (BARC), northwestern Philippines. Histological examination and ex situ planulation observations reveal P.cf. cylindrica colonies to be gonochoric brooders that release actively swimming zooxanthellate larvae. Planulation appeared to occur throughout the year and there was significant lunar periodicity in planular release. The mean peak of release occurred from the 25th to 29th lunar day or just before the new moon, while peak in diel timing in planulation occurred during daytime between 08:00–11:00 h. Elsewhere in the Pacific, Porites cylindrica colonies are reported to broadcast spawn. If our species identification is correct, then this is the first report of brooding in P. cylindrica. Although there are no apparent morphological differences between the coral in this study and P. cylindrica reported from other sites, an alternative explanation for our findings is that our provisionally identified Porites cf. cylindrica is a different species. If so, our findings further highlight how difficulties with species identification in corals can influence our understanding of geographical variation in reproductive biology. 相似文献
13.
Sasan Aliniaeifard Priscila Malcolm Matamoros Uulke van Meeteren 《Physiologia plantarum》2014,152(4):688-699
Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L‐plants were sprayed with ABA (abscisic acid) during exposure to L. L‐plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M‐plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L‐plants were almost similar to the M‐plants, while their transpiration rate and stomatal conductance were identical to that of L‐plants. The stomatal response to ABA was lost in L‐plants, but also after 1‐day exposure of M‐plants to low VPD. The level of foliar ABA sharply decreased within 1‐day exposure to L, while the level of ABA‐GE (ABA‐glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1‐day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4‐day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli. 相似文献
14.
Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? 总被引:16,自引:0,他引:16
Genetic relations among the contents of Rubisco, soluble protein and total leaf nitrogen (N) in leaves of rice (Oryza sativa L.) were studied by quantitative trait loci (QTL) analysis with a population of backcross inbred lines (BILs) of japonica Nipponbarexindica Kasalath. The ratio of Rubisco to total leaf N in leaves is the main target in improving photosynthetic N-use efficiency in plants. QTLs controlling Rubisco content were not detected near QTLs for total leaf N content. These results indicate that contents of Rubisco and total leaf N are controlled by different genetics. QTLs that controlled the ratio of Rubisco to total leaf N (CORNs) were detected. These results suggest that some mechanism(s) may be involved in determining this ratio, while the contents of Rubisco and total leaf N are controlled in other ways. In elite BILs, the ratios of Rubisco to total leaf N were higher than those of both parents. These results suggest a good possibility of improving N-use efficiency by CORNs in cultivated rice. A QTL controlling Rubisco content was mapped near a QTL for soluble protein content on chromosome 8 at 5 d after heading and on chromosome 9 at 25 d. In each chromosome region, the peaks of both QTLs overlapped accurately, giving a high possibility of pleiotropic effects by the same genes. Different QTLs controlling soluble protein or Rubisco were detected from those detected at 5 d or 25 d after heading. This suggests that these traits are genetically controlled depending on the growth stages of leaves. 相似文献
15.
Both cytochrome P-450 and glutathione participate in the metabolism of xenobiotics. Their interrelationship is described here, as well as current findings indicating their mutual involvement in lipid peroxidation. 相似文献
16.
Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean: is the effect located in roots or shoots? 总被引:4,自引:1,他引:3
Saravitz Carole H.; Chaillou Sylvain; Musset Joanne; Raper C. David Jr.; Morot-Gaudry Jean-Francis 《Journal of experimental botany》1994,45(11):1575-1584
In non-nodulated soybean [Glycine max (L.) Merrill cv. Ransom]plants that were subjected to 15 d of nitrogen deprivation inflowing hydroponic culture, concentrations of nitrogen declinedto 1.0 and 1.4mmol Ng1 dry weight in shoots and roots,respectively, and the concentration of soluble amino acids (determinedas primary amines) declined to 40µmol g1 dry weightin both shoots and roots. In one experiment, nitrogen was resuppliedfor 10 d to one set of nitrogen-depleted plants as 1.0 mol m3NH4+ to the whole root system, to a second set as 0.5 mol m3NH4+ plus 0.5 mol m3 NO3 to the whole root system,and to a third set as 1.0 mol m3 NH4+ to one-half ofa split-root system and 1.0 mol m3 NO3 to theother half. In a second experiment, 1.0 mol m3 of nitrogenwas resupplied for 4 d to whole root systems in NH4+ : NO3ratios of 1:0, 9:1, and 1:1. Nutrient solutions were maintainedat pH 6.0. When NH4+ was resupplied in combination with NO3 to thewhole root system in Experiment I, cumulative uptake of NH4+for the 10 d of resupply was about twice as great as when NH4+was resupplied alone. Also, about twice as much NH4+ as NO3was taken up when both ions were resupplied to the whole rootsystem. When NH4+ and NO3 were resupplied to separatehalves of a split-root system, however, cumulative uptake ofNH4+ was about half that of NO3. The uptake of NH4+,which is inhibited in nitrogen-depleted plants, thus is facilitatedby the presence of exogenous NO3, and the stimulatingeffect of NO3 on uptake of NH4+ appears to be confinedto processes within root tissues. In Experiment II, resupplyof nitrogen as both NH4+ and NO3 in a ratio of either1:1 or 9:1 enhanced the uptake of NH4+. The enhancement of NH4+uptake was 1.8-fold greater when the NH4+: NO3-resupplyratio was 1:1 than when it was 9:1; however, only 1.3 timesas much NO3 was taken up by plants resupplied with the1 :1 exogenous ratio. The effect of NO3 on enhancementof uptake of NH4+ apparently involves more than net uptake ofNO3 itself and perhaps entails an effect of NO3uptake on maintenance of K+ availability within the plant. Theconcentration of K+ in plants declined slightly during nitrogendeprivation and continued to decline following resupply of nitrogen.The greatest decline in K+ concentration occurred when nitrogenwas resupplied as NH4+ alone. It is proposed that decreasedavailability of K+ within the NH4+-resup-plied plants inhibitedNH4+ uptake through restricted transfer of amino acids fromthe root symplasm into the xylem. Key words: Ammonium, Glycine max, nitrate, nitrogen-nutrition, nitrogen stress, split-root cultures 相似文献
17.
Jeff Alexander J. Alan Payne Brian Shigekawa Jeffrey A. Frelinger Peter Cresswell 《Immunogenetics》1990,31(3):169-178
The transport of human-mouse hybrid class I histocompatibility antigens has been studied in a mutant human cell line, 174 × CEM.T2 (T2). T2, a somatic cell hybrid of human B- and T-lymphoblastoid cell lines (B-LCL and T-LCL, respectively), synthesizes HLA-A2 and HLA-B5 glycoproteins, but expresses only low levels of A2 and undetectable levels of B5 at the cell surface. We have previously shown that the products of human class I genes introduced into T2 by transfection behave like the endogenous HLA-B5 glycoproteins, while the products of mouse class I alleles similarly introduced are transported normally to the cell surface. We have now determined that the surface expression of class I glycoproteins in T2 depends on the origin of the 1 and 2 domains. Human (HLA-B7) and mouse (H-2D
p
) hybrid class I genes, encoding the leader, 1, and 2 sequences of one species fused to the 3, transmembrane, and cytoplasmic domains of the other, were transfected into T2. Normal surface expression of the hybrid class I molecule was observed in T2 only when the leader, 1, and 2-encoding exons were derived from the mouse gene. The reciprocal construct, encoding human leader, 1, and 2 domains fused to the mouse 3, transmembrane, and cytoplasmic regions, resulted in biosynthesis of a hybrid glycoprotein which was not transported to the cell surface. The products of both constructs were expressed normally in control cells. The effects of glycosylation on class I antigen transport were also studied using mutant class I constructs with altered glycosylation sites. Two mutant B7 genes encoding either an extra glycosylation site at position 176 or no glycosylation sites were transfected into T2. These mutant products were expressed at the cell surface in control cells, but were synthesized and not surface-expressed in T2. These data demonstrate that the HLA/H-2 transport dichotomy in T2 is a function of the origin of the 1 and/or 2 domains of the class I glycoprotein, and is not a reflection of glycosylation differences between the human and mouse molecules.
Offprint requests to: P. Cresswell. 相似文献
18.
It is generally accepted that chromosomal inversions have been key elements in adaptation and speciation processes. In this context, Drosophila subobscura has been, and still is, an excellent model species due to its rich chromosomal polymorphism. In this species, many analyses from natural populations have demonstrated the adaptive potential of individual inversions (and their overlapped combinations, the so‐called arrangements). However, little information is available on the evolutionary role of combinations generated by inversions located in homologous and nonhomologous chromosomes. The aim of this research was to ascertain whether these combinations are also a target for natural selection. For this objective, we have studied the inversion composition of homologous and nonhomologous chromosomes from a D. subobscura sample collected in a well‐studied population, Mount Avala (Serbia). No significant deviation from H‐W expectations was detected, and when comparing particular karyotypic combinations, likelihood ratios close to 1 were obtained. Thus, it seems that for each pair of homologous chromosomes inversions no deviation from randomness was detected. Finally, no linkage disequilibrium was observed between inversions located in different chromosomes of the karyotype. For all these reasons, it can be assumed that, at the cytological level, the individual inversions rather than their combinations in different chromosomes are the main target of selection. 相似文献
19.
Ferreres F Figueiredo R Bettencourt S Carqueijeiro I Oliveira J Gil-Izquierdo A Pereira DM Valentão P Andrade PB Duarte P Barceló AR Sottomayor M 《Journal of experimental botany》2011,62(8):2841-2854
Class III peroxidases (Prxs) are plant enzymes capable of using H(2)O(2) to oxidize a range of plant secondary metabolites, notably phenolic compounds. These enzymes are localized in the cell wall or in the vacuole, which is a target for secondary metabolite accumulation, but very little is known about the function of vacuolar Prxs. Here, the physiological role of the main leaf vacuolar Prx of the medicinal plant Catharanthus roseus, CrPrx1, was further investigated namely by studying its capacity to oxidize co-localized phenolic substrates at the expense of H(2)O(2). LC-PAD-MS analysis of the phenols from isolated leaf vacuoles detected the presence of three caffeoylquinic acids and four flavonoids in this organelle. These phenols or similar compounds were shown to be good CrPrx1 substrates, and the CrPrx1-mediated oxidation of 5-O-caffeoylquinic acid was shown to form a co-operative regenerating cycle with ascorbic acid. Interestingly, more than 90% of total leaf Prx activity was localized in the vacuoles, associated to discrete spots of the tonoplast. Prx activity inside the vacuoles was estimated to be 1809 nkat ml(-1), which, together with the determined concentrations for the putative vacuolar phenolic substrates, indicate a very high H(2)O(2) scavenging capacity, up to 9 mM s(-1). Accordingly, high light conditions, known to increase H(2)O(2) production, induced both phenols and Prx levels. Therefore, it is proposed that the vacuolar couple Prx/secondary metabolites represent an important sink/buffer of H(2)O(2) in green plant cells. 相似文献
20.
Neves AR Ventura R Mansour N Shearman C Gasson MJ Maycock C Ramos A Santos H 《The Journal of biological chemistry》2002,277(31):28088-28098
The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of (13)C-labeled NAD(+) and NADH. The capacity of L. lactis MG1363 to regenerate NAD(+) was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH(-) deficient strain was constructed by double crossover. Upon supply of glucose, NAD(+) was constant and maximal (approximately 5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH(-) strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH(-) strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD(+). However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P(i) content could play an important role. 相似文献