首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-resistance (IR) impairs agonist-induced relaxation in cerebral arteries, but little is known about its effect on constrictor mechanisms. We examined the vascular responses of the basilar artery (BA) and its side branches in anesthetized Zucker lean (ZL) and IR Zucker obese (ZO) rats using a cranial window technique. Endothelin-1 (ET-1) constricted the BAs in both the ZL and ZO rats, but there was no significant difference between the two groups (ZL: 36 +/- 8%; ZO: 33 +/- 3% at 10(-8) M). Inhibition of the ET(A) receptors by BQ-123 slightly increased the diameters of the BAs, with no difference shown between the ZL (6 +/- 1%) and ZO (5 +/- 3%) rats. Expressions of the ET(A) receptors and ET-1 mRNA examined by immunoblot analysis and RT-PCR, respectively, were also similar in the ZL and ZO groups. Phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), and the thromboxane A(2) (TxA(2)) mimetic U-46619 constricted the BAs, but similarly to ET-1, there was no significant difference between the ZL and ZO groups (10(-6) M PDBu: ZL: 33 +/- 2%; ZO: 32 +/- 4%; and 10(-7) M U-46619: ZL: 23 +/- 1%; ZO: 19 +/- 2%). Inhibition of Rho-kinase with Y-27632 induced dilation of the BAs, and these responses were also comparable in the ZL and ZO rats (ZL: 39 +/- 4%; ZO: 38 +/- 2% at 10(-5) M). In contrast, nitric oxide-dependent relaxation to bradykinin was significantly reduced in the ZO rats (10(-6) M: 10 +/- 3%) compared with ZLs (29 +/- 7%, P < 0.01). These findings indicate that vasoconstrictor responses of the BA mediated by ET-1, TxA(2), PKC, and Rho-kinase are not affected by IR.  相似文献   

2.
Insulin resistance (IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225 microm) of Zucker obese (ZO) and control Zucker lean (ZL) rats. Vascular responses to insulin (0.1-100 ng/ml), ACh (10(-9)-10(-5) mol/l), and sodium nitroprusside (10(-8)-10(-4) mol/l) were assessed in SCA by measurement of intraluminal diameter using videomicroscopy. Insulin-induced dilation was decreased in ZO compared with ZL rats, whereas ACh and sodium nitroprusside elicited similar vasodilations. Pretreatment of arteries with SOD (200 U/ml), a scavenger of reactive oxygen species (ROS), restored the vasorelaxation response to insulin in ZO arteries, whereas ZL arteries were unaffected. Pretreatment of SCA with N-nitro-L-arginine methyl ester (100 micromol/l), an inhibitor of endothelial nitric oxide (NO) synthase (eNOS), elicited a vasoconstrictor response to insulin that was greater in ZO than in ZL rats. This vasoconstrictor response was reversed to vasodilation in ZO and ZL rats by cotreatment of the SCA with SOD or apocynin (10 micromol/l), a specific inhibitor of vascular NADPH oxidase. Lucigenin-enhanced chemiluminescence showed increased basal ROS levels as well as insulin (330 ng/ml)-stimulated production of ROS in ZO arteries that was sensitive to inhibition by apocynin. Western blot analysis revealed increased eNOS expression in ZO rats, whereas Mn SOD and Cu,Zn SOD expression were similar to ZL rats. Thus IR in ZO rats leads to decreased insulin-induced vasodilation, probably as a result of increased production of ROS by vascular NADPH oxidase, leading to decreased NO bioavailability, despite a compensatory increase in eNOS expression.  相似文献   

3.
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).  相似文献   

4.
Insulin-resistance induces cerebrovascular dysfunction and increases the risk for stroke. We investigated whether rosuvastatin (RSV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, can reverse reduced cerebrovascular responsiveness in insulin-resistant rats. Dilator responses of the basilar artery (BA) were examined after 1-day or 4-wk RSV (2 mg.kg(-1).day(-1)) treatment in anesthetized 12-wk-old insulin-resistant Zucker obese (ZO) and lean (ZL) rats by using a cranial window preparation. Vehicle-treated ZO rats had significantly higher fasting insulin, total cholesterol (TC), and triglyceride (TG) levels compared with ZL rats. In addition, in the ZO rats, dilator responses of the BA to acetylcholine, iloprost, cromakalim, and potassium chloride were significantly reduced when compared with ZL rats. One-day RSV treatment improved dilator responses of the ZO BAs without altering lipid levels. Four-week RSV treatment lowered both TC and TG by 30% and also improved dilator responses of the ZO BAs, although without additional effects compared with the 1-day RSV treatment. NAD(P)H oxidase-dependent superoxide production was significantly higher in the cerebral arteries of vehicle-treated ZO rats compared with ZL rats, but both 1-day and 4-wk RSV treatments normalized elevated superoxide levels in the ZO arteries. These findings demonstrate that RSV improves cerebrovascular function in insulin-resistance independently from its lipid-lowering effect by the inhibition of NAD(P)H oxidase.  相似文献   

5.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

6.
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.  相似文献   

7.
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.  相似文献   

8.
Insulin resistance (IR) and consequent hyperinsulinemia are hallmarks of Type 2 diabetes (DM2). Akt kinase (Akt) is an important molecule in insulin signaling, implicated in regulation of glucose uptake, cell growth, cell survival, protein synthesis, and endothelial nitric oxide (NO) production. Impaired Akt activation in insulin-sensitive tissues contributes to IR. However, Akt activity in other tissues, particularly those affected by complications of DM2, has been less studied. We hypothesized that hyperinsulinemia could have an impact on activity of Akt and its effectors involved in regulation of renal morphology and function in DM2. To address this issue, renal cortical Akt was determined in obese Zucker rats (ZO), a model of DM2, and lean controls (ZL). We also studied expression and phosphorylation of the mammalian target of rapamycin (mTOR) and endothelial NO synthase (eNOS), molecules downstream of Akt in the insulin signaling cascade, and documented modulators of renal injury. Akt activity was measured by a kinase assay with GSK-3 as a substrate. Expression of phosphorylated (active) and total proteins was measured by immunoblotting and immunohistochemistry. Renal Akt activity was increased in ZO as compared to ZL rats, in parallel with progressive hyperinsulinemia. No differences in Akt were observed in the skeletal muscle. Corresponding to increases in Akt activity, ZO rats demonstrated enhanced phosphorylation of renal mTOR. Acute PI3K inhibition with wortmannin (100 mug/kg) attenuated renal Akt and mTOR activities in ZO, but not in ZL rats. In contrast to mTOR, eNOS phosphorylation was similar in ZO and ZL rats, despite higher total eNOS expression. In conclusion, ZO rats demonstrated increases in renal Akt and mTOR activity and expression. However, eNOS phosphorylation did not follow this pattern. These data suggest that DM2 is associated with selective IR in the kidney, allowing pro-growth signaling via mTOR, whereas potentially protective effects mediated by eNOS are blunted.  相似文献   

9.
Objective: To determine the impact of insulin resistance and obesity on muscle triacylglycerol (IMTG) and glycogen metabolism during and after prolonged exercise. Research Methods and Procedures: Female lean (fa/?; N = 40, ZL) and obese insulin-resistant (fa/fa; N = 40, ZO) Zucker rats performed an acute bout of swimming exercise (8 times for 30 minutes) followed by 6 hours of carbohydrate supplementation (CHO) or fasting (FAST). IMTG and glycogen were measured in the extensor digitorum longus (EDL) and red vastus lateralis (RVL) muscles. Results: Despite resting IMTG content being 4-fold higher in ZO compared with ZL rats, IMTG levels were unchanged in either EDL or RVL muscles immediately after exercise. Resting glycogen concentration in EDL and RVL muscles was similar between genotypes, with exercise resulting in glycogen use in both muscles from ZL rats (∼85%, p < 0.05). However, in ZO rats, there was a much smaller decrease in postexercise glycogen content in both EDL and RVL muscles (∼30%). During postexercise recovery, there was a decrease in EDL muscle levels of IMTG in ZL rats supplemented with CHO after 30 and 360 minutes (p < 0.05). In contrast, IMTG content was increased above resting levels in RVL muscles of ZO rats fasted for 360 minutes. Six hours of CHO refeeding restored glycogen content to resting levels in both muscles in ZL rats. However, after 6 hours of FAST in ZO animals, RVL muscle glycogen content was still lower than resting levels (p < 0.05). At this time, IMTG levels were elevated above basal (p < 0.05). Discussion: In both healthy and insulin-resistant skeletal muscle, there was negligible net IMTG degradation after a single bout of prolonged exercise. However, during postexercise recovery, there was differential metabolism of IMTG between phenotypes.  相似文献   

10.
11.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

12.
The goal of the present study was to evaluate the effects of relatively short-term chronic intermittent hypoxia (CIH) on endothelial function of resistance vessels in the skeletal muscle and cerebral circulations. Sprague-Dawley rats were exposed to 14 days of CIH (10% fraction of inspired oxygen for 1 min at 4-min intervals, 12 h/day, n = 6). Control rats (n = 6) were housed under normoxic conditions. After 14 days, resistance arteries of the gracilis muscle (GA) and middle cerebral arteries (MCA) were isolated and cannulated with micropipettes, perfused and superfused with physiological salt solution, and equilibrated with 21% O2-5% CO2 in a heated chamber. The arteries were pressurized to 90 mmHg, and vessel diameters were measured via a video micrometer before and after exposure to ACh (10-7-10-4 M), sodium nitroprusside (10-6 M), and acute reduction of Po2 in the perfusate/superfusate (from 140 to 40 mmHg). ACh-induced dilations of GA and MCA from animals exposed to CIH were greatly attenuated, whereas responses to nitroprusside were similar to controls. Dilations of both GA and MCA in response to acute reductions in Po2 were virtually abolished in animals exposed to CIH compared with controls. These findings suggest that exposure to CIH reduces the bioavailability of nitric oxide in the cerebral and skeletal muscle circulations and severely blunts vasodilator responsiveness to acute hypoxia.  相似文献   

13.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

14.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 mg.kg(-1).day(-1)) to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats.  相似文献   

15.
Aging is associated with alterations in beta-adrenergic receptor (beta-AR) signaling and reduction in cardiovascular responses to beta-AR stimulation. Because exercise can attenuate age-related impairment in myocardial beta-AR signaling and function, we tested whether training could also exert favorable effects on vascular beta-AR responses. We evaluated common carotid artery responsiveness in isolated vessel ring preparations from 8 aged male Wistar-Kyoto (WKY) rats trained for 6 wk in a 5 days/wk swimming protocol, 10 untrained age-matched rats, and 10 young WKY rats. Vessels were preconstricted with phenylephrine (10-6 M), and vasodilation was assessed in response to the beta-AR agonist isoproterenol (10-10-3 x 10-8 M), the alpha2-AR agonist UK-14304 (10-9-10-6 M), the muscarinic receptor agonist ACh (10-9-10-6 M), and nitroprusside (10-8-10-5 M). beta-AR density and cytoplasmic beta-AR kinase (beta-ARK) activity were tested on pooled carotid arteries. beta-ARK expression was assessed in two endothelial cell lines from bovine aorta and aorta isolated from a 12-wk WKY rat. beta-AR, alpha2-AR, and muscarinic responses, but not that to nitroprusside, were depressed in untrained aged vs. young animals. Exercise training restored beta-AR and muscarinic responses but did not affect vasodilation induced by UK-14304 and nitroprusside. Aged carotid arteries showed reduced beta-AR number and increased beta-ARK activity. Training counterbalanced these phenomena and restored beta-AR density and beta-ARK activity to levels observed in young rat carotids. Our data indicate that age impairs beta-AR vasorelaxation in rat carotid arteries through beta-AR downregulation and desensitization. Exercise restores this response and reverts age-related modification in beta-ARs and beta-ARK. Our data support an important role for beta-ARK in vascular beta-AR vasorelaxation.  相似文献   

16.
Intact Madison (M) rats have greater pulmonary pressor responses to acute hypoxia than Hilltop (H) rats. We tested the hypothesis that the difference in pressor response is intrinsic to pulmonary arteries and that endothelium contributes to the difference. Pulmonary arteries precontracted with phenylephrine (10(-7) M) from M rats had greater constrictor responses [hypoxic pulmonary vasoconstriction (HPV)] to acute hypoxia (0% O(2)) than those from H rats: 473 +/- 30 vs. 394 +/- 29 mg (P < 0.05). Removal of the endothelium or inhibition of nitric oxide (NO) synthase by N(omega)-nitro-L-arginine (L-NA, 10(-3) M) significantly blunted HPV in both strains. Inhibition of cyclooxygenase by meclofenamate (10(-5) M) or blockade of endothelin type A and B receptors by BQ-610 (10(-5) M) + BQ-788 (10(-5) M), respectively, had no effect on HPV. Constrictor responses to phenylephrine, endothelin-1, and prostaglandin F(2alpha) were similar in pulmonary arteries from both strains. The relaxation response to ACh, an NO synthase stimulator, was significantly greater in M than in H rats (80 +/- 3 vs. 62 +/- 4%, P < 0.01), but there was no difference in response to sodium nitroprusside, an NO donor. L-NA potentiated phenylephrine-induced contraction to a greater extent in pulmonary arteries from M than from H rats. These findings indicate that at least part of the strain-related difference in acute HPV is attributable to differences in endothelial function, possibly related to differences in NO production.  相似文献   

17.
L-Arginine is a common substrate for the enzymes arginase and nitric oxide synthase (NOS). Acute inhibition of arginase enzyme activity improves endothelium-dependent vasorelaxation, presumably by increasing availability of substrate for NOS. Arginase is activated by manganese (Mn), and the consumption of a Mn-deficient (Mn-) diet can result in low arginase activity. We hypothesize that endothelium-dependent vasorelaxation is greater in rats fed Mn- versus Mn sufficient (Mn+) diets. Newly weaned rats fed Mn+ diets (0.5 microg Mn/g; n = 12) versus Mn+ diets (45 microg Mn/g; n = 12) for 44 +/- 3 days had (i) lower liver and kidney Mn and arginase activity (P < or = 0.05), (ii) higher plasma L-arginine (P < or = 0.05), (iii) similar plasma and urine nitrate + nitrite, and (iv) similar staining for endothelial nitric oxide synthase in thoracic aorta. Vascular reactivity of thoracic aorta (approximately 720 microm i.d.) and small coronary arteries (approximately 110 microm i.d.) was evaluated using wire myographs. Acetylcholine (ACh; 10(-8)-10(-4) M) produced greater (P < or = 0.05) vasorelaxation in thoracic aorta from Mn- rats (e.g., maximal percent relaxation, 79 +/- 7%) versus Mn + rats (e.g., maximal percent relaxation, 54 +/- 9%) at 5 of 7 evaluated doses. Tension produced by NOS inhibition using N(G) monomethyl-L-arginine (L-NMMA; 10(-3) M) and vasorelaxation evoked by (i) arginase inhibition using difluoromethylornithine (DFMO; 10(-7) M), (ii) ACh (10(-8)-10(-4) M) in the presence of DFMO, and (iii) sodium nitroprusside (10(-9)-10(-4) M) were unaffected by diet. No differences existed between groups concerning these responses in small coronary arteries. These findings support our hypothesis that endothelium-dependent vasorelaxation is greater in aortic segments from rats that consume Mn- versus Mn+ diets; however, responses from small coronary arteries were unaffected.  相似文献   

18.
The effects of galanin on pancreatic exocrine function were examined using rat pancreatic tissues. In anesthetized rats, galanin (40 micrograms/kg/h) decreased amylase secretion stimulated by 2-deoxy glucose (5.8 +/- 0.1 vs. 3.1 +/- 0.1 times basal) and cholecystokinin octapeptide (21.5 +/- 0.6 vs. 16.8 +/- 0.5), while not inhibiting bethanechol-stimulated secretion. In dispersed acini, there was no effect of galanin alone (10(-8) to 10(-13) M) on amylase release, nor did galanin (10(-6) or 10(-8) M) coincubation affect amylase release stimulated by bethanechol (10(-3) to 10(-7) M) or CCK-8 (10(-8) to 10(-13) M). Using pancreatic lobules, coincubation with galanin (10(-6) M) suppressed 75 mM KCl-stimulated amylase secretion and ACh release (10.1 +/- 0.6% vs. 7.3 +/- 0.4%). Veratridine-stimulated (10(-4) M) amylase secretion and ACh release (12.4 +/- 1.7% vs. 8.5 +/- 0.7%) were similarly diminished.  相似文献   

19.
Ten-day administration of the glutamate-cysteine ligase inhibitor L-buthionine-[S,R]-sulfoximine (BSO; 20 or 30 mM in drinking water) to adult male Sprague-Dawley rats induced 50-60% glutathione depletion (p<0.001) and elevated aortic ring reactive oxygen species release and tissue and plasma H2O2 concentrations (p<0.001) compared to control animals (CON) that consumed normal drinking water. In contrast to previous studies using tail cuff plethysmography methods, BSO had no significant effect on systolic blood pressure assessed by indwelling femoral artery catheters in conscious animals (10-day values, 119+/-3 mn Hg vs 122+/-4 mm Hg in CON vs BSO, respectively). Thoracic aorta rings were excised for in vitro assessment of vasomotor function. BSO shifted the phenylephrine (PE) dose-response curve to the left (p=0.003), lowering the EC50 for PE contraction (from -6.752+/-0.056 to -7.056+/-0.055 log units; p=0.001). Endothelium-dependent relaxation to acetylcholine (ACh) was significantly blunted (p=0.019) and the EC50 for ACh relaxation was significantly increased (from -7.428+/-0.117 to -7.129+/-0.048 log units; p=0.02) in BSO vs CON. Endothelium-independent vasorelaxation to sodium nitroprusside was similar in BSO and CON groups. Thoracic aorta immunoblot analyses revealed increases in endothelial nitric oxide synthase, superoxide dismutase 1 and 2, and soluble guanylate cyclase in BSO vs CON (all p<0.01). Thus, enhanced PE contraction, blunted endothelium-dependent relaxation, and adaptations in nitric oxide bioavailability pathways provide the first evidence of chronic, in vivo BSO-induced, oxidative stress-mediated direct effects on the vasomotor function of arteries.  相似文献   

20.
We hypothesized that myocardial contractile function and coronary arterial function are greater after ischemia and reperfusion in high-intensity treadmill-trained vs. sedentary rats. Rats performed 10 x 4-min bouts of treadmill running consisting of 2 min at 13 m/min + 2 min at 45-60 m/min (Etr) or were sedentary (Sed) for 12 wk. Animals then were instrumented to measure left ventricular (LV) contractility in response to three 15-min coronary occlusion (O) and 5-min reperfusion (R) cycles (Isc) or a sham operation (Sham). After the Isc and Sham protocols, hearts were excised and coronary arterial ( approximately 105 microm ID) function was evaluated by using isometric techniques. LV developed pressure, the first derivative of LV pressure at a developed pressure of 40 mmHg, and systolic blood pressure were not different between Etr (n = 14) and Sed (n = 7) rats before or after the Sham protocol. Furthermore, hemodynamic variables were similar in Etr (n = 14) and Sed (n = 13) animals before the Isc protocol and were depressed to the same degree by the three O-R cycles. Therefore, Etr did not alter myocardial contractile function in rats that were (i.e., Isc) or were not (i.e., Sham) exposed to ischemia and reperfusion. Acetylcholine-evoked relaxation (10-8 to 3 x 10-5 M) was greater (P < 0.05) in coronary arteries from Sham-Etr vs. Sham-Sed animals (5 of 8 doses tested) and Isc-Etr vs. Isc-Sed rats (3 of 8 doses tested). Maximal relaxation produced by sodium nitroprusside (10-4 M) was similar among groups. Vasocontractile responses produced by KCl (10-100 mM) and endothelin-1 (10-11-10-4 M) were greater (P < 0.05) in the presence vs. the absence of nitric oxide synthase inhibition (10-6 M NG-monomethyl-l-arginine) in vessels from Sham-Etr but not Sham-Sed rats and from Isc-Etr but not Isc-Sed rats. These findings suggest that Etr-evoked improvements in coronary function are maintained in small arteries even when exposed to ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号