首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intralingual accelerator muscle is the primary actuator for the remarkable ballistic tongue projection of the chameleon. At rest, this muscle envelopes the elongated entoglossal process, a cylindrically shaped bone with a tapering distal end. During tongue projection, the accelerator muscle elongates and slides forward along the entoglossal process until the entire muscle extends beyond the distal end of the process. The accelerator muscle fibres are arranged in transverse planes (small deviations are possible), and form (hitherto unexplained) spiral-shaped arcs from the peripheral to the internal boundary.To initiate tongue projection, the muscle fibres probably generate a high intramuscular pressure. The resulting negative pressure gradient (from base to tip) causes the muscle to elongate and to accelerate forward. Effective forward sliding is made possible by a lubricant and a relatively low normal stress exerted on the proximal cylindrical part of the entoglossal process. A relatively high normal stress is, however, probably required for an effective acceleration of muscle tissue over the tapered end of the process. For optimal performance, the fast extension movement should occur without significant (energy absorbing) torsional motion of the tongue. In addition, the tongue extension movement is aided by a close packing of the muscles fibres (required for a high power density) and a uniform strain and work output in every cross-section of the muscle.A quantitative model of the accelerator muscle was developed that predicts internal muscle fibre arrangements based on the functional requirements above and the physical principle of mechanical stability. The curved shapes and orientations of the muscle fibres typically found in the accelerator muscle were accurately predicted by the model. Furthermore, the model predicts that the reduction of the entoglossal radius towards the tip (and thus the internal radius of the muscle) tends to increase the normal stress on the entoglossal bone.  相似文献   

2.
Electromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue’s surface are placed heuristically. No recommendation exists. Within this paper, a model-based approach providing a mathematical analysis and a computational-based recommendation for the placement of sensors, which is based on the tongue’s envelope of movement, is proposed. For this purpose, an anatomically detailed Finite Element (FE) model of the tongue has been employed to determine the envelope of motion for retraction and elongation using a forward simulation. Two optimality criteria have been proposed to identify a set of optimal sensor locations based on the pre-computed envelope of motion. The first one is based on the assumption that locations exhibiting large displacements contain the most information regarding the tongue’s movement and are less susceptible to measurement errors. The second one selects sensors exhibiting each the largest displacements in the anterior-posterior, superior-inferior, medial-lateral and overall direction. The quality of the two optimality criteria is analysed based on their ability to deduce from the respective sensor locations the corresponding muscle activation parameters of the relevant muscle fibre groups during retraction and elongation by solving the corresponding inverse problem. For this purpose, a statistical analysis has been carried out, in which sensor locations for two different modes of deformation have been subjected to typical measurement errors. Then, for tongue retraction and elongation, the expectation value, the standard deviation, the averaged bias and the averaged coefficient of variation have been computed based on 41 different error-afflicted sensor locations. The results show that the first optimality criteria is superior to the second one and that the averaged bias and averaged coefficient of variation decrease when the number of sensors is increased from 2, 4 to 6 deployable sensors.  相似文献   

3.
Objectives: The purpose of this study was to provide an oral function promotion programme for the independent elderly and evaluate the changes in oral health status and oral function. Background: Few studies have scientifically analysed and evaluated the effectiveness of oral function promotion programmes provided for the independent elderly. Materials and methods: The subjects were independent elderly females (mean age: 74.6 ± 6.3) recruited from senior citizens’ centres in Tokyo. The intervention group (n = 79) received a 3‐month oral function promotion programme, which included facial muscle and tongue exercises and salivary gland massages. The control group (n = 62) did not receive this programme. Results: In the intervention group, the tongue coating scores decreased and the organoleptic score of oral malodour fell. The amount of food debris in the oral cavity decreased and the tongue dryness improved. Furthermore, the salivary flow rate increased. The length of time for maintaining the tongue in the forward position increased from 11.2 s to 18.7 s, and the number of times for moving the tip of the tongue in a clockwise circular motion, counter‐clockwise circular motion and side‐to‐side motion within 30 s, increased from 14.5 to 20.6, 14.5 to 20.2, and 17.2 to 23.3 respectively. The number of times for movement of the lips significantly improved from 23.0 to 28.8 and the pronunciation of words was observed to be clearer. Conclusion: An oral function promotion programme was effective in improving the oral health status and oral function of an independent elderly population.  相似文献   

4.
The kinematics of prey capture by Ascaphus truei was investigated. High-speed films (100 fps) of 13 successful and one unsuccessful prey capture sequences from six adult frogs were analysed. Ascaphus , the sister group of all living frogs, shares several aspects of feeding kinematics, including rotation of the tongue pad about the mandibular symphysis and mandibular bending during mouth opening and closing, with more derived frogs such as Bufo marinus. The times required for tongue retraction, mouth opening and closing are similar in Ascaphus and Bufo. However, because Bufo is much larger and protracts its tongue much farther than Ascaphus , the velocities of tongue retraction, mouth opening and mouth closing are relatively lower in Ascaphus than in Bufo. Differences in prey capture between Ascaphus and Bufo marinus are (1) the distance of tongue protraction is less in Ascaphus (±0.5 cm) than in Bufo (c. 2 cm); and (2) lunging of the whole body is more pronounced in Ascaphus. Prey capture is highly variable in Ascaphus. An intraoral transport sequence is sometimes (7 of 14 observations) inserted into the prey capture cycle before the completion of mouth closing. The gape cycles range from 80–150 ms for sequences with no oral transport and from 130–280 ms for sequences with oral transport. Also, the time required for tongue retraction is significantly longer in the unsuccessful capture attempt. This variability is generally greater than that observed during prey capture in salamanders, and suggests that frogs and salamanders may differ in the importance of sensory feedback in coordinating prey capture.  相似文献   

5.
Tongue movements were studied in Contsrictor constrictor by direct observation and by analysis of motion pictures. Vertical tongue movements consisted of an invariant sequence of protrusion, oscillation up and down, and retraction. Lateral deviation of the tongue occurred only in the company of vertical movements and was correlated with the direction of movement of the snake's head. Flick cluster duration varied from about 80 ms to about 1 s; variation in oscillation phase duration accounted for 69 per cent of the total variation. Oscillation phase duration varied linearly with the number of flicks in the flick cluster, suggesting that flick cluster duration is determined primarily by the number of oscilations which are carried out at a constant rate.  相似文献   

6.
Prey capture in Agama stellio was recorded by high-speed video in combination with the electrical activity of both jaw and hyolingual muscles. Quantification of kinematics and muscle activity patterns facilitated their correlation during kinematic phases. Changes in angular velocity of the gape let the strike be subdivided into four kinematic phases: slow open (SOI and SOII), fast open (FO), fast close (FC), and slow close-power stroke (SC/PS). The SOI phase is marked by initial activity in the tongue protractor, the hyoid protractor, and the ring muscle. These muscles project the tongue beyond the anterior margin of the jaw. During the SOII phase, a low level of activity in the jaw closers correlates with a decline of the jaw-opening velocity. Next, bilateral activity in the jaw openers defines the start of the FO phase. This activity ends at maximal gape. Simultaneously, the hyoid retractor and the hyoglossus become active, causing tongue retraction during the FO phase. At maximal gape, the jaw closers contract simultaneously, initiating the FC phase. After a short pause, they contract again and the prey is crushed during the SC/PS phase. Our results support the hypothesis of tongue projection in agamids by Smith ([1988] J. Morphol. 196:157–171), and show some striking similarities with muscle activity patterns during the strike in chameleons (Wainwright and Bennett [1992a] J. Exp. Biol. 168:1–21). Differences are in the activation pattern of the hyoglossus. The agamid tongue projection mechanism appears to be an ideal mechanical precursor for the ballistic tongue projection mechanism of chameleonids; the key derived feature in the chameleon tongue projection mechanism most likely lies in the changed motor pattern controlling the hyoglossus muscle. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber populations during maximal attempted lengthening contractions.  相似文献   

8.
To understand the mechanisms for introducing urine or vaginal secretions into the vomeronasal organ, we used 16 mm cinematography and a freeze frame/slow motion technique to analyze the mouth and tongue movements of Brahman bulls while they examined the vulvas of restrained, estrogen-primed cows. Prior to flehmen, the mouth slowly opened, the curled tip of the tongue compressed the hard palate and the body of the tongue protruded from the mouth. The tongue maintained this form and moved forward. Once the tip of the tongue reached the incisive papilla, the body of the tongue retracted and the tip of the tongue relaxed. This tongue compression stroke (TCS) of the hard palate occurred 2 to 6 times, lasting 1 4 to 1 2 sec/stroke. Pressure changes in the vomeronasal organ are assumed to occur during and following TCSs, resulting in aspiration of any liquid in the incisive pit into the incisive and vomeronasal ducts. Such aspiration probably does not occur during flehmen because the tongue is relaxed and on the floor of the mouth.  相似文献   

9.
Responses to transcranial magnetic stimulation in human subjects (n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical stimulation increased from approximately 1.5 to 7% of ongoing torque. Thus "supraspinal" fatigue developed in each protocol. The motor evoked potential (MEP) and silent period in the elbow flexor muscles also changed. The silent period lengthened by 20-75 ms (lowest to highest duty cycle protocol) and recovered significantly with a 5-s rest. The MEP increased in area by >50% in all protocols and recovered significantly with 10 s, but not 5 s, of rest. These changes are similar to those during sustained MVC. The central fatigue demonstrated by the torque increments evoked by the stimuli did not parallel the changes in the electromyogram responses. This suggests that part of the fatigue developed during intermittent exercise is "upstream" of the motor cortex.  相似文献   

10.
Plethodontid salamanders of the genus Hydromantes capture prey using the most extreme tongue projection among salamanders, and can shoot the tongue a distance of 80% of body length in less than 20?msec. The tongue skeleton is projected from the body via an elastic-recoil mechanism that decouples muscle contraction from tongue projection, amplifying muscle power tenfold. We tested the hypothesis that the elastic-recoil mechanism also endows tongue projection with low thermal dependence by examining the kinematics and dynamics of tongue projection in Hydromantes platycephalus over a range of body temperatures (2-24°C). We found that H. platycephalus maintained tongue-projection performance over the tested temperature range and that tongue projection showed thermal independence (Q(10) values of 0.94-1.04) of all performance parameters including projection distance, average velocity, and peak instantaneous values of velocity, acceleration, and power. Nonelastic, muscle-powered tongue retraction, in contrast, responded to temperature changes significantly differently than elastic tongue projection; performance parameters of retraction displayed thermal dependence typical of muscle-powered movement (Q(10) values of 1.63-4.97). These results reveal that the elastic-recoil mechanism liberates tongue projection from the effects of temperature on muscle contractile rates. We suggest that relative thermal independence is a general characteristic of elastic-recoil mechanisms and may promote the evolution of these mechanisms in ectothermic animals.  相似文献   

11.
Object detection in the fly during simulated translatory flight   总被引:1,自引:0,他引:1  
Translatory movement of an animal in its environment induces optic flow that contains information about the three-dimensional layout of the surroundings: as a rule, images of objects that are closer to the animal move faster across the retina than those of more distant objects. Such relative motion cues are used by flies to detect objects in front of a structured background. We confronted flying flies, tethered to a torque meter, with front-to-back motion of patterns displayed on two CRT screens, thereby simulating translatory motion of the background as experienced by an animal during straight flight. The torque meter measured the instantaneous turning responses of the fly around its vertical body axis. During short time intervals, object motion was superimposed on background pattern motion. The average turning response towards such an object depends on both object and background velocity in a characteristic way: (1) in order to elicit significant responses object motion has to be faster than background motion; (2) background motion within a certain range of velocities improves object detection. These properties can be interpreted as adaptations to situations as they occur in natural free flight. We confirmed that the measured responses were mediated mainly by a control system specialized for the detection of objects rather than by the compensatory optomotor system responsible for course stabilization. Accepted: 20 March 1997  相似文献   

12.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

13.
A sparged gas bubble floating at the liquid interface has a liquid film which drains and thins until the film spontaneously ruptures at a point. This causes rapid retraction of the film, forming a rim of collected fluid. This rim moves at a constant velocity of about 3 m/s and any cells in the bubble film are rapidly accelerated to this velocity in the moving rim. Half of the surface energy originally in the thin film is converted to kinetic energy of the rim, while the rest is dissipated in this rim. The rate of energy dissipation per mass of rim fluid is approximately 9000 m2/s3, which corresponds to a Kolmogorov eddy size of 3.2 microns in fully developed turbulence or a shear stress of 95 N/m2 in laminar flow. Either of these limiting cases presents an environment in which rapid cell death would be expected. Experiments with Sf-9 insect cells suggest that the cell concentration in these thin films is 0.6 times the bulk liquid concentration and that about 20% of these cells are killed when the film ruptures. An equation based on this mechanism accurately predicts the death rate.  相似文献   

14.
Three hypothetical models of tongue movement of the walrus during suction feeding are examined. These models encompass the entire range of simple tongue retraction movements possible by examining 1) movement of the tongue directly to the rear following the curvature of the palate, 2) to the rear and ventrally in a straight line, and 3) ventrally in a straight line. The percent of muscular force available from the hyoglossus, genioglossus, and styloglossus that could be applied toward retraction as predicted by each model is calculated. The resistance that the tongue would provide during retraction is calculated using projected tongue areas and is combined with the above data from the muscles to provide an estimate of the percent of the total available force that is needed to retract the tongue for each model. A separate examination of the direction of tongue-induced wear striations on the palatal and lingual aspects of the teeth is used to help support or reject the three models. The model where the tongue is moved directly to the rear is supported by studies of both muscle force and tooth wear. In the mammalian groups that were compared to the walrus, there is a great deal of interspecific variation in movements of the tongue during suction feeding; no two groups can be considered to have identical stereotyped tongue movements.  相似文献   

15.
The aim of this human study was to investigate the effect of experimentally induced muscle pain on the modifications of motor unit discharge rate during sustained, constant-force contractions. Intramuscular and multichannel surface electromyographic (EMG) signals were collected from the right and left tibialis anterior muscle of 11 volunteers. The subjects performed two 4-min-long isometric contractions at 25% of the maximal dorsiflexion torque, separated by a 20-min rest. Before the beginning of the second contraction, hypertonic (painful; right leg) or isotonic (nonpainful; left leg) saline was injected into the tibialis anterior. Pain intensity scores did not change significantly in the first 150 s of the painful contraction. Exerted torque and its coefficient of variation were the same for the painful and nonpainful contractions. Motor unit discharge rate was higher in the beginning of the nonpainful contraction than the painful contraction on the right side [means +/- SE, 11.3 +/- 0.2 vs. 10.6 +/- 0.2 pulses/s (pps); P < 0.01] whereas it was the same for the two contractions on the left side (11.6 +/- 0.2 vs. 11.5 +/- 0.2 pps). The decrease in discharge rate in 4 min was smaller for the painful (0.4 +/- 0.1 pps) than for the control contractions (1.3 +/- 0.1 pps). Initial value and decrease in motor unit conduction velocity were not different in the four contractions (right leg, 4.0 +/- 0.1 m/s with decrease of 0.6 +/- 0.1 m/s in 4 min; left leg, 4.1 +/- 0.1 m/s with 0.7 +/- 0.1 m/s decrease). In conclusion, stimulation of nociceptive afferents by injection of hypertonic saline did not alter motor unit conduction velocity but reduced the initial motor unit discharge rates and the difference between initial and final discharge rates during sustained contraction.  相似文献   

16.
Whether the transition in fatigue processes between "low-intensity" and "high-intensity" contractions occurs gradually, as the torque requirements are increased, or whether this transition occurs more suddenly at some identifiable "threshold", is not known. We hypothesized that the critical torque (CT; the asymptote of the torque-duration relationship) would demarcate distinct profiles of central and peripheral fatigue during intermittent isometric quadriceps contractions (3-s contraction, 2-s rest). Nine healthy men performed seven experimental trials to task failure or for up to 60 min, with maximal voluntary contractions (MVCs) performed at the end of each minute. The first five trials were performed to determine CT [~35-55% MVC, denoted severe 1 (S1) to severe 5 (S5) in ascending order], while the remaining two trials were performed 10 and 20% below the CT (denoted CT-10% and CT-20%). Dynamometer torque and the electromyogram of the right vastus lateralis were sampled continuously. Peripheral and central fatigue was determined from the fall in potentiated doublet torque and voluntary activation, respectively. Above CT, contractions progressed to task failure in ~3-18 min, at which point the MVC did not differ from the target torque (S1 target, 88.7 ± 4.3 N·m vs. MVC, 89.3 ± 8.8 N·m, P = 0.94). The potentiated doublet fell significantly in all trials, and voluntary activation was reduced in trials S1-S3, but not trials S4 and S5. Below CT, contractions could be sustained for 60 min on 17 of 18 occasions. Both central and peripheral fatigue developed, but there was a substantial reserve in MVC torque at the end of the task. The rate of global and peripheral fatigue development was four to five times greater during S1 than during CT-10% (change in MVC/change in time S1 vs. CT-10%: -7.2 ± 1.4 vs. -1.5 ± 0.4 N·m·min(-1)). These results demonstrate that CT represents a critical threshold for neuromuscular fatigue development.  相似文献   

17.
This study investigated the functional contributions of the submentalis muscle to the coordination of feeding behavior in the leopard frog, Rana pipiens. Additionally, the anatomical origins of the motor neurons innervating this muscle are identified and described. The m. submentalis is a small muscle connecting the distal mandibular tips. Depending upon the anuran species studied, this muscle contributes to mandibular bending and the degree to which the tongue is protracted, or has little or no role in feeding biomechanics. High-speed videography was used to quantify feeding attempts before versus after bilateral denervation of the m. submentalis. Additionally, the terminal branch of the trigeminal nerve prior to innervating the m. submentalis was retrogradely labeled to identify the origins of motor neurons innervating the muscle. For the kinematic analyses, denervation of the submentalis resulted in significant increases in the time to maximum tongue protrusion, and the duration of tongue protrusion. Neither mandibular bending, nor tongue length variables differed significantly between normal conditions and deafferented conditions. However, when unsuccessful feeding attempts were quantified following the denervation, failed attempts were nearly always due to the tongue not reaching the prey. None of the unsuccessful feedings prior to denervation were due to inadequate tongue protrusion. Anatomical data show a much larger rostral-caudal distribution of the trigeminal motor neurons than previously described for anurans. These data suggest a larger role for the submentalis muscle in Rana than in previously studied anurans with long protrusible tongues, and suggests a feedback mechanism from the trigeminal nerve to the nerves coordinating tongue protraction and retraction.  相似文献   

18.
A total of 120 muscle tissues from three horses naturally infected with Trichinella spiralis were examined. The head was the most infected site. In particular, the muscles harbouring the highest number of larvae were: musculus buccinator (12, 411 and 1183 larvae g-1), the tongue (11, 615 and 1749 larvae g-1), m. levator labii maxillaris (17,582 and 1676 larvae g-1), and the masseter (4.9, 289 and 821 larvae g-1). Compared with the diaphragm, the number of larvae per gram was from 3.5 to 6.8 times higher in the tongue, from 3.5 to 6.5 higher in m. levator labii maxillaris, and from 2.5 to 4.6 higher in m. buccinator. Of the examined muscles, the diaphragm had from the 6th to the 15th highest level of infection (3.1, 166 and 256 larvae g-1). Published data from experimentally infected horses confirm these results, suggesting that efforts to detect predilection sites should focus on the head muscles.  相似文献   

19.
Historically, an understanding of viviparity and its evolution in Old World chameleons (Chamaeleonidae) has lagged behind that of other squamate families. Not only is reproductive information scarce or entirely absent for most chameleon species, but the literature reveals no consensus as to the frequency and ecological circumstances under which chameleon viviparity evolved. We integrated information on reproductive modes for nearly all chameleon species with recently published family-scale phylogenetic and ecological analyses to clarify aspects of reproductive evolution in chameleons. Ancestral-trait reconstructions, after accounting for phylogenetic uncertainty, indicated that viviparity has arisen a minimum of three times in Chamaeleonidae, with each origin of live birth in closed-canopy forests. Our maximum-likelihood optimization therefore did not support the previous hypotheses of one, two or four origins of viviparity in the family. Past claims that arboreality would not allow for evolution of viviparity were also not supported, nor was a recent suggestion that viviparity has reverted to oviparity. However, cold climates of high latitudes and elevations may have selected for viviparity in arboreal chameleons. While peritoneal pigmentation may facilitate viviparity, its role as an exaptation rather than an adaptation remains equivocal without data from a wider range of chameleon species. Based on a comprehensive review of reproductive modes throughout the family, our study has resolved the number of origins of viviparity in Chamaeleonidae and provided evidence that live birth evolved under arboreal conditions on three separate occasions in this enigmatic squamate group. This study also reveals the value of using phylogenetic analysis in a manner that is robust to uncertainty (rather than simple correlational approaches) when the goal is to reconstruct evolutionary sequences and selective pressures.  相似文献   

20.
Applications in robot-aided surgery are currently based on modifications of manipulators used in industrial manufacturing processes. In this paper we describe novel rotatory kinematics for a manipulator, specially developed for deployment in robot-aided surgery. The construction of the gearing mechanism used for the positioning and orientation of a linkage point is described. Forward and inverse kinematics were calculated, and a constructive solution proposed. The gearing mechanism is based on two disk systems, each of which consists of two opposing rotatable discs. The construction was designed in such a way that the linkage point can be positioned freely anywhere within the mechanism's range of motion. The kinematics thus permits an x-y-positioning via rotating movements only. The spatial arrangement of two of such disc systems permits movements in four degrees of freedom (DOF). The construction is compact, but can be further miniaturized, is flexible and manufacturing costs are low. On the basis of this mechanical concept a new, small automated manipulator for surgical application will be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号