首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A purified acid protease from a true thermophilic fungus, Penicillium duponti K1014, was most active at pH 2.5 for milk casein and at pH 3.0 for hemoglobin. The enzyme was stable at a pH range of 2.5 to 6.0 at 30 C for 20 h. The acid protease retained full activity after 1 h at 60 C at a pH range between 3.5 and 5.5. At the most stable pH of 4.5, more than 65% of its activity remained after heat treatment for 1 h at 70 C. These thermal properties show the enzyme as a thermophilic protein. The enzyme activity was strongly inhibited by sodium lauryl sulfate and oxidizing reagents such as potassium permanganate and N-bromosuccinimide. No inhibition was caused by chelating reagents, potato inhibitor, and those reagents which convert sulfhydryl groups to mercaptides. Reducing reagents showed an activating effect. The enzyme showed the trypsinogen-activating property at an acidic pH range; optimal trypsinogen activation was obtained at a pH of approximately 3.0. The isoelectric point of the enzyme was estimated to be pH 3.89 by disk electrofocusing. By using gel filtration, an approximate value of 41,000 was estimated for the molecular weight.  相似文献   

2.
It has been previously demonstrated in our laboratory that uridine nucleosidase (EC 3.2.2.3) is inactivated by yeast protease A (EC 3.4.23.8). A complete purification procedure for protease A from bakers' yeast, which lacks the acidic activation step used by other workers, and the major properties of the enzyme are shown. The enzyme is homogeneous as judged by disc gel electrophoresis. Its molecular weight, calculated from both sodium dodecyl sulfate-disc gel electrophoresis and gel filtration experiments, is around 45,000. The protein does not possess quaternary structure. The isoelectric point is 4.1. Carbohydrate content is around 8%. Amino acids analysis and sulfur analysis reveal the presence of 1-SH group and two disulfide bridges. The free-SH group does not seem to be involved in catalysis. Amino terminal analysis shows that isoleucine is at the amino terminal position. The pH optima are 2.4 for the hydrolysis of azocasein and casein, and 3.3 for the hydrolysis of hemoglobin. The Km value for hemoglobin is 1.7 × 10?5m. The inhibition exerted by pepstatin on the proteolytic activity of protease A is pH dependent. Among various yest enzyme substrates only uridine nucleosidase is inactivated by protease A.  相似文献   

3.
A protease from the lotus seed (Nelumbo nucifera Gaertn) was purified by acid-treatment, ammonium sulfate-fractionation, ethylalcohol-fractionation, TEAE-cellulose-treatment and Sephadex G-100 gel-filtration.

The enzyme was purified about 870-fold and was homogeneous in electrophoretic and ultracentrifugal analyses.

Purified lotus seed protease is an acid protease with a pH optimum at 3.8 toward urea-denatured casein. It is active for casein and hemoglobin. But other proteins such as edestin, zein, lotus seed globulin and soybean casein are slightly hydrolyzed and egg albumin is hardly hydrolyzed. This enzyme is most stable at pH 4.0 below 40°C. The enzyme is not a thiol protease, and its activity was completely inhibited by potassium permanganate, remarkably inhibited by sodium dodecylsulfate and accelerated by hydrogen peroxide.  相似文献   

4.
1. Isorenin was purified 2000-fold from rat brain by a simple 3-step procedure involving affinity chromatography on pepstatinyl-Sepharose, The preparation appears as a homogenous protein in analytical polyacrylamide gel electrophoresis. Sodium dodecyl sulfate gel electrophoresis indicated an apparent molecular weight of 45 000. Isoelectric focusing separated isoenzymes with isoelectric points at pH 5.45, 5.87, 6.16 and 7.05. 2. The enzyme generates antiotensin I from tetradecapeptide (pH optimum 4.7) and from sheep angiotensinogen (pH optima 3.9 and 5.5). The rate of angiotensin I formation from tetradecapeptide was 30 000 times higher than that from sheep angiotensinogen. The enzyme has acid protease activity at pH 3.2 with hemoglobin as the substrate and pepstatin is a potent inhibitor of the enzyme with a Ki of less than 10(-9) M. 3. The properties of the enzyme strongly suggest that it is identical with cathepsin D.  相似文献   

5.
1. A neutral thiol protease was purified from the culture filtrate of newly excysted metacercariae of Paragonimus westermani to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, having a monomeric form with mol. wt 22,000. 2. It expressed activity on t-butyloxycarbonyl-valyl-leucyl-lysyl-4-methyl-coumaryl-7-amide in the presence of cysteine at an optimal pH of 7.5, and also the activity was significantly affected by thiol protease inhibitors, indicating that the enzyme belongs to a neutral thiol protease family. 3. The enzyme hydrolyzed protein substrates, azocoll, casein and fluorescein isothiocyanate-labeled collagen, and showed low specificity toward hemoglobin, but no activity with elastin Congo Red and bovine serum albumin. 4. Catalytic property on fluorogenic substrates demonstrated that the enzyme cleaved preferentially the carboxylic side of the basic residue in N-substituted peptides.  相似文献   

6.
The enzyme with high milk clotting activity produced by Irpex lacteus was partially purified by a CM-cellulose chromatography. Throughout the over-all process, the enzyme was purified approximately 9-fold from a crude powder with about 22.8% recovery of the original activity. The MCA/PU ratio of this fraction was 2.51 and the specific milk clotting activity was 188.7.

The purified enzyme is a sort of acid protease with optimum pH of 2.5 for casein digestion and 4.0 for hemoglobin digestion. The Lineweaver-Burk plot, when casein was used as a substrate, showed that the Km value of the enzyme was about 0.07% and the Vmax value was 0.4. The molecular weight of the enzyme is about 34,000, the isoelectric point is pH 5.2 and a ultraviolet absorption maximum is at 277 mμ. The enzyme has not yet been crystalized but seems to be a sort of glycoprotein, because the Molish reaction was positive at the present purification stage.

Some enzymological properties of the enzyme was studied and compared with those of a calf rennet and Mucor rennet. In some respects such as pH optima, pH stability, thermostability and temperature optima, the enzyme is Mucor rennet alike. On the other hand, as to the increase in activity along with decrease in pH of milk and the increase in activity along with the addition of Ca ion, the enzyme is not very different from the calf rennet. However, proteolysis of milk casein by the enzyme was fairly higher than by the calf rennet.

As to the production of enzymes, I. lacteus can produce at least three types of proteases into liquid media. When, for example, R medium was used, only one type of protease, that is the fraction A, could mainly be produced and it was this enzyme that assumed to be a rennet like enzyme.  相似文献   

7.
Occurrence of milk acid protease in bovine casein in addition to alkaline protease was found and purification of this enzyme was achieved. The enzyme had a pH optimum at 4.0 and was most stable at pH 3.5. The molecular weight of the enzyme was 36,000 and no inhibition was observed by diisopropyl-fluorophosphate, EDTA etc. This enzyme is considered to be similar to cathepsin D.

Milk acid protease mainly hydrolyzed αs-casein and similar change was observed in autolysis of casein at pH 5.5. It is suggested that milk acid protease may have some significance in cheese ripening.  相似文献   

8.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

9.
An extracellular protease has been isolated from the culture medium of Penicillium roqueforti. The enzyme was purified by precipitation with ammonium sulfate, filtration on Bio-gel P 100 columns and chromatography on D.E.A.E.-cellulose columns The purified preparation was homogenous by gel filtration on Bio-gel P 60 and electrophoretical analysis at pH 9.0 and 5.0.The protease exhibited the properties of an acid protease: the optimum pH was 3.5 for casein or hemoglobin hydrolysis and for bovine trypsinogen activation; at 40°C, the enzyme is most stable in the range of pH 3.5 to 5.5; the optimum temperatures was 50°C.E.D.T.A., D.F.P. and sulfhydryl reagents induced no inhibition.The enzyme exhibited a milk clotting activity that was fifty times weaker that the activity of rennin. Its molecular weight, estimated by gel filtration was 33 400. Amino acid composition is: Lys15, His2, Arg1, Trp5, Asp33, Thr27, Glu16, Pro10, Gly40, Ala25, Cys2, Val21, Ile20, Leu21, Tyr14, Phe19.The properties of this protease were closely similar to that of P. janthinellum and Aspergillus oryzae.  相似文献   

10.
Purification and Properties of Mucor pusillus Acid Protease   总被引:11,自引:1,他引:10       下载免费PDF全文
The protease produced by Mucor pusillus was recovered from a wheat bran medium by treatment with ammonium sulfate, ethyl alcohol, gel filtration and ion-exchange chromatography. The yield of the enzyme was 55%. The overall increase in the specific activity of the protease was 34-fold. The purified protease was most active at pH 3.8 and 5.6 against hemoglobin and casein, respectively. Optimal hydrolysis of casein was observed at 55 C. The enzyme was stable from pH 3.0 to 6.0. Enzyme inactivated by metal ions was reactivated by ethylenediaminetetraacetate and o-phenanthroline. Reducing agents and thiol poisons had no effect on the protease, suggesting that free sulfhydryl groups were not required for enzyme activity. Diisopropyl fluorophosphate did not inhibit the protease, indicating the probable absence of serine in the active center. The Michaelis-Menten constant for casein was 0.357%. Electrophoretic analysis of active protein recovered by ion-exchange chromatography showed that the protease preparation was homogeneous.  相似文献   

11.
A protease occurring in the endosperm fraction of germinating corn was purified by means of (NH4)2SO4 fractionation, CM-celluIose chromatography, DEAE-cellulose chromatography, Sephadex G-100 gel filtration and preparative polyacrylamide gel electrophoresis. The purified protease was found to have a molecular weight of about 21,000 and an isoelectric point of pH 2.3 or lower. The optimum pH was found to lie at 3.0 when measured with denatured hemoglobin as substrate. The protease was generally activated by thiol compounds and completely inhibited by p-chloromercuribenzoic acid. Neither diisopropylphosphofluoridate nor diazoacetyl-dl-norleucine methyl ester affected the protease activity. Antipain greatly inhibited the protease action whereas pepstatin had no significant effect. These data indicate, in conclusion, that the protease possesses a unique property to be a sulfhydryl enzyme most active in an acidic region around pH 3.  相似文献   

12.
A new cytoplasmic endoprotease, named protease So, was purified to homogeneity from Escherichia coli by conventional procedures with casein as the substrate. Its molecular weight was 140,000 when determined by gel filtration on Sephadex G-200 and 77,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be composed of two identical subunits. Protease So had an isoelectric point of 6.4 and a K(m) of 1.4 muM for casein. In addition to casein, it hydrolyzed globin, glucagon, and denatured bovine serum albumin to acid-soluble peptides but did not degrade insulin, native bovine serum albumin, or the "auto alpha" fragment of beta-galactosidase. A variety of commonly used peptide substrates for endoproteases were not hydrolyzed by protease So. It had a broad pH optimum of 6.5 to 8.0. This enzyme is a serine protease, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. Although it was not inhibited by chelating agents, divalent cations (e.g., Mg(2+)) stabilized its activity. Protease So was sensitive to inhibition by N-tosyl-l-phenylalanine chloromethyl ketone but not by N-tosyl-l-lysine chloromethyl ketone. Neither ATP nor 5'-diphosphate-guanosine-3'-diphosphate affected the rate of casein hydrolysis. Protease So was distinct from the other soluble endoproteases in E. coli (including proteases Do, Re, Mi, Fa, La, Ci, and Pi) in its physical and chemical properties and also differed from the membrane-associated proteases, protease IV and V, and from two amino acid esterases, originally named protease I and II. The physiological function of protease So is presently unknown.  相似文献   

13.
A Streptomyces-pepsin inhibitor (S-PI or pepstatin Ac)-insensitive carboxyl proteinase was found in a still culture filtrate of Ganoderma lucidum (Mannen-take). The new carboxyl proteinase was purified, and about 15 mg of the purified enzyme was obtained from 15 liters of culture filtrate, with 13% recovery. The enzyme showed a single protein band on Polyacrylamide gel electrophoresis.

The enzyme was most active at pH 3.2 toward hemoglobin, and at pH 2.0 toward casein, and stable only in the narrow pH range of 3.5 to 5.2 even under mild treatment (37°C for 3hr). The molecular weight and isoelectric point were 36,000 and pH 5.3, respectively. The enzyme did not contain methionine.

The enzyme was characterized by the following points: (1) the proteolytic activity was not inhibited by carboxyl proteinase inhibitors such as S-PI, DAN, and EPNP; (2) the enzyme was very unstable; (3) the caseinolytic activity was very low compared with the hydrolysis of hemoglobin (about 15%); (4) the enzyme split preferentially the Phe(24)–Phe(25) bond of oxidized insulin B-chain at the rate of 50% for total hydrolysis. These characteristics were compared with the carboxyl proteinases isolated from Scytalidium lignicolum and Lentinus edodes, which were reported to be SPI- and DAN-insensitive carboxyl proteinases.  相似文献   

14.
Using electrophoresis and ultracentrifugation, a homogeneous proteinase was isolated from protofradine, a protease Act. fradiae 119 preparation. The purification procedure included filtration on DEAE-cellulose, gel filtration through Arcylex P-10, CM-chromatography and desalting on Sephadex G-15. The proteinase under study is an endopeptidase which hydrolyzes low molecular weight synthetic trypsin substrates as well as casein and denaturated collagen. Diisopropylfluorophosphate and soya bean trypsin inhibitor completely inhibit the proteinase activity, whereas pCMB and EDTA have no such effect. The stability maximum is observed at pH of 2.5-3.5, the action maximum at pH 8.7-9.5. The amino acid composition of the enzyme is similar to that of trypsin from Str. griseus. The molecular weights of the proteinase as determined by gel filtration and sedimentation equilibrium method are equal to 25400 and 26500, respectively. The isoelectric point lies at 5.3. The data obtained suggest that the proteinase can be attributed to the family of trypsin proteinases.  相似文献   

15.
An extracellular proteinase from Enterococcus faecalis subsp. liquefaciens has been purified 780-fold by a method including gel filtration on Sephadex G-50 and affinity chromatography with gramicidin J as ligand. Approximately 15% of the original enzyme activity was recovered. A purification of 14,800-fold, with 11.4% yield, may be reached using chromatofocusing as final step in the purification procedure. The molar mass of the enzyme has been estimated to be approximately 30 kDa by Sephadex gel filtration and approximately 26 kDa by SDS-PAGE. The isoelectric point has been found to be 4.6. Maximum enzyme activity of the proteinase has been observed at pH 7.5 and 45 degrees C. The enzyme hydrolyzed bovine serum albumin, alpha-lactoalbumin, beta-lactoglobulin, casein and pork myofibrillar and sarcoplasmic proteins. The extracellular proteinase was very stable; the enzyme maintained its activity in cell-free extracts over a very wide range of temperatures (-25 to 37 degrees C) for at least 2 months. At 12 degrees C, it was stable in the pH range of 5.5 to 8.0.  相似文献   

16.
We screened a strain which can produce a new protease. The strain, Lactobacillus sp. no. 1, was isolated from a natural environment as an organism which could utilize gramicidin S as a sole nitrogen source. This strain was proved to produce much protease because it formed a large halo on a plate containing casein, and the protease was purified using ion exchange column chromatography. The amino-terminal amino acid sequence of the hydrolyzed products by the cleavage of gramicidin S was determined by a protein sequencer, and sizes of those products were analyzed by a mass spectrometer. The protease could cleave two peptide bonds between l-Orn-l-Leu in gramicidin S. These cleavage sites were different from other reported cleavage sites of gramicidin S by protease. The molecular weight of the protease was 42,000 by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the enzyme activity were 5.5 and 45°C, respectively. The enzyme activity was inhibited by EDTA, but not by phenylmethylsulfonyl fluoride (PMSF). Because the reported protease that can hydrolyze gramicidin S was a serine protease and the cleavage site was different from that of this protease from Lactobacillus sp. no. 1, we concluded that this enzyme was a new type of metal protease which can cleave both linear and cyclic peptide substrates with a unique substrate specificity.  相似文献   

17.
Purification and properties of a thiol protease from rat liver nuclei   总被引:1,自引:0,他引:1  
A thiol protease was purified about 800-fold from the chromatin fraction of rat liver by employing Sepharose 6B gel filtration, chromatofocusing and Sephadex G-100 gel filtration. It was nearly homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and its molecular weight was about 29000. The isoelectric point of the enzyme was 7.1. The pH optimum for degradation of 3H-labelled ribosomal proteins was 4.5. It is noticeable that the maximal activity was shifted to pH 5.5 by DNA, and that 30-40% of the maximal activity was observed at neutral pH in the presence of DNA. The activity was increased about twice by 2-4 mM dithiothreitol. The protease may be specific for the nuclei because it is different from all lysosomal thiol proteases ever known.  相似文献   

18.
A riboflavin α-glucoside-synthesizing enzyme from the acetone powder of pig liver was purified by a procedure including fractionation with ammonium sulfate, heat treatment, fractionation with acetone, gel filtration on a Sephadex G-150 column, calcium phosphate gel treatment, and isoelectric focusing. A final enzyme preparation was homogeneous on polyacrylamide disc gel electrophoresis and in the ultracentrifuge. The enzyme had a sedimentation coefficient of 9.90 S and an isoelectric point of pH 3.7. The enzyme had a pH optimum at 6.0 with maltose as substrate. The enzyme catalyzed the hydrolysis of diverse kinds of α-glucosidic substrates, and the transfer of α-glucosyl residue from these substrates to riboflavin. The Km value for maltose was 1.20×10?3m. The enzyme hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside. Amylose was almost completely hydrolyzed to glucose by the enzyme. Maltotriose was obtained as the main transfer product after the treatment of maltose with the enzyme. The enzyme also catalyzed the transfer of α-glucosyl residue from maltose to pyridoxine, esculin, rutin, and adenosine. It was recognized that a single enzyme catalyzed not only the hydrolysis of maltose and α-glucosidic substrates but also the transfer of the α-glucosyl residue of these substrates to suitable acceptors.  相似文献   

19.
Two kinds of proteolytic enzyme, tentatively named acid protease A and B which showed a single peak on electrophoresis individually, were isolated from the crude enzyme powder obtained from the broth filtrate cultured with Asper gillus niger var. macrosporus. Acid protease B is similar too the fungal acid protease previously reported, bccause the enzyme exhibits optimum activity on milk casein at about pH 2.6 and 55°C when the incubation was done at pH 2.6. Acid protease A is a new proteolytic enzyme, because the enzyme exhibits optimum activity on milk casein at about 2.0 and 70°C or 60°C when the incubation was done at pH 2.6 or 1.5 respectively.  相似文献   

20.
A protease has been purified from sarcocarp of musk melon, Cucumis melo ssp. melo var. reticulatus Naud. Earl’s Favourite. The protease was mostly present in the placenta part of the fruit and next in the inside mesocarp. The molecular mass of the enzyme was estimated to be about 62kDa on SDS-PAGE. The enzyme had a carbohydrate moiety. The optimum pH of the enzyme was 11 at 35°C using casein as a substrate. The enzyme was stable between pH 6 and 11. The enzyme was strongly inhibited by diisopropyl fluorophosphate, but was not inhibited by EDTA or cysteine protease inhibitors. From the digestion of Ala-Ala-Pro-X-pNA (X = Phe, Leu, Val, Ala, Gly, Lys, Glu, Pro, and diaminopropionic acid (Dap) substrates the specificity of the protease was found to be approximately broad, but the preferential cleavage sites were C-terminal sites of hydrophobic or acidic amino acid residues at P, position. It was proved that the enzymatic properties of musk melon protease are similar to those of cucumisin [EC 3.4.21.25]. The enzyme was not inhibited by typical proteinous inhibitors such as STI or ovomucoid. Therefore, this enzyme seems to be a useful protease for the food industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号