首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Lai YL  Chiou WY  Lu FJ 《Life sciences》2002,70(11):1271-1277
Antioxidants attenuate hyperpnea-induced airway constriction. It was hypothesized that this type of airway constriction is closely related to reactive oxygen species (ROS). However, there is no direct evidence of an increase in ROS during or right after the course of hyperpnea. To detect ROS production induced by hyperpnea, forty one guinea pigs were divided into four groups: control; control with 95% O2-5% CO2; hyperpnea with 95% air-5% CO2; and hyperpnea with 95% O2-5% CO2. Three minutes following hyperpnea or at the equivalent time, we obtained bronchoalveolar lavage (BAL) and measured its chemiluminescence (CL) counts. In addition, hyperpnea with 95% O2-5% CO2 gas mixture was carried out and BAL was collected 3 minutes after the hyperpnea in an additional forty animals. We measured CL counts in BAL samples before and after the treatments of the following ROS scavenger(s) or saline in vitro: control (saline); superoxide dismutase (SOD); catalase; dimethylthiourea (DMTU); and SOD+catalase+DMTU. Hyperpnea with 95% O2-5% CO2, but not with 95% air-5% CO2, gas mixture induced significant increase in t-butyl hydroperoxide-initiated CL counts, which were inhibited by DMTU, catalase, or SOD in vitro. Our data suggest that hyperpnea with a 95% O2-5% CO2, but not with 95% air-5% CO2, gas mixture induced an increase in ROS production.  相似文献   

2.
Spin-trapping electron spin resonance (ESR) was used to monitor the formation of superoxide and hydroxyl radicals in D1/D2/cytochrome b-559 Photosystem II reaction center (PS II RC) Complex. When the PS II RC complex was strongly illuminated, superoxide was detected in the presence of ubiquinone. SOD activity was detected in the PS II RC complex. A primary product of superoxide, hydrogen peroxide, resulted in the production of the most destructive reactive oxygen species, *OH, in illuminated PS II RC complex. The contributions of ubiquinone, SOD and H(2)O(2) to the photobleaching of pigments and protein photodamage in the PS II RC complex were further studied. Ubiquinone protected the PS II RC complex from photodamage and, interestingly, extrinsic SOD promoted this damage. All these results suggest that PS II RC is an active site for the generation of superoxide and its derivatives, and this process protects organisms during strong illumination, probably by inhibiting more harmful ROS, such as singlet oxygen.  相似文献   

3.
This study used an in vivo ESR spectroscopy/spin probe technique to measure directly the generation of reactive oxygen species (ROS) in the brain after cerebral ischemia-reperfusion. Transient middle cerebral artery occlusion (MCAO) was induced in rats by inserting a nylon thread into the internal carotid artery for 1 h. The in vivo generation of ROS and its location in the brain were analyzed from the enhanced ESR signal decay data of three intra-arterially injected spin probes with different membrane permeabilities. The ESR signal decay of the probe with intermediate permeability was significantly enhanced 30 min after reperfusion following MCAO, whereas no enhancement was observed with the other probes or in the control group. The enhanced in vivo signal decay was significantly suppressed by superoxide dismutase (SOD). Brain damage was barely discernible until 3 h of reperfusion, and was clearly suppressed with the probe of intermediate permeability. The antioxidant MCI-186 completely suppressed the enhanced in vivo signal decay after transient MCAO. These results clearly demonstrate that ROS are generated at the interface of the cerebrovascular cell membrane when reperfusion follows MCAO in rats, and that the ROS generated during the initial stages of transient MCAO cause brain injury.  相似文献   

4.
N-beta-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial peptide, generates hydrogen peroxide (H(2)O(2)) that exerts antitumour activity. We have investigated the precise mechanism of H(2)O(2) production from 5-S-GAD by autoxidation aiming to understand its action toward tumour cells. Using the electron spin resonance (ESR) technique, we detected a strong signal due to radical formation from 5-S-GAD. Surprisingly, the ESR signal of the radical derived from 5-S-GAD appeared after incubation for 30 min at 37 degrees C in the buffer at pH 7.4; the signal was persistently detected for 10 h in the absence of catalytic metal ions. The computer simulation of the observed ESR spectrum together with the theoretical calculation of the spin density of the radical species indicates that an o-semiquinone radical anion was formed from 5-S-GAD. We demonstrated that H(2)O(2) is produced via the formation of superoxide anion O2(.-) by the electron-transfer reduction of molecular oxygen by the 5-S-GAD anion, which is in equilibrium with 5-S-GAD in the aqueous solution. The radical formation and the subsequent H(2)O(2) production were inhibited by superoxide dismutase (SOD), when the antitumour activity of 5-S-GAD was inhibited by SOD. Thus, the formation of the o-semiquinone radical anion would be necessary for the antitumour activity of 5-S-GAD as an intermediate in the production of cytotoxic H(2)O(2).  相似文献   

5.
Content of reactive oxygen species (ROS): O2*-, H2O2 and OH* as well as activities of antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) were studied in leaves of Arabidopsis thaliana ecotype Columbia, treated with Cu excess (0, 5, 25, 30, 50, 75, 100, 150 and 300 microM). After 7 days of Cu action ROS content and the activity of SOD and POX increased, while CAT activity decreased in comparison with control. Activities of SOD, POX and CAT were correlated both with Cu concentration (0-75 microM) in the growth medium and with OH* content in leaves. Close correlation was also found between OH* content and Cu concentration. Oxidative stress in A. thaliana under Cu treatment expressed in elevated content of O2*-, H2O2 and OH* in leaves. To overcome it very active the dismutase- and peroxidase-related (and not catalase-related, as in other plants) ROS scavenging system operated in A. thaliana. Visual symptoms of phytotoxicity: chlorosis, necrosis and violet colouring of leaves as well as a reduction of shoot biomass occurred in plants.  相似文献   

6.
The effect of the chemical structure of nitroxyl spin probes on the rate at which ESR signals are lost in the presence of reactive oxygen species (ROS) was examined. When the spin probes were reacted with either hydroxyl radical (.OH) or superoxide anion radical (O(2)(.-)) in the presence of cysteine or NADH, the probes lost ESR signal depending on both their ring structure and substituents. Pyrrolidine nitroxyl probes were relatively resistant to the signal decay caused by O(2)(.-) with cysteine/NADH. Signal decay rates for these reactions correlated with reported redox potentials of the nitroxyl/oxoammonium couple of spin probes, suggesting that the signal decay mechanism in both cases involves the oxidation of a nitroxyl group. The apparent rate constants of the reactions between the spin probe and .OH and between the spin probe and O(2)(.-) in the presence of cysteine were estimated using mannitol and superoxide dismutase (SOD), respectively, as competitive standards. The rate constants for spin probes and .OH were in the order of 10(9) M(-1) s(-1), much higher than those for the probes and O(2)(.-) in the presence of cysteine (10(3)-10(4) M(-1) s(-1)). These basic data are useful for the measurement of .OH and O(2)(.-) in living animals by in vivo ESR spectroscopy.  相似文献   

7.
The interrelationship among water-stress-induced abscisic acid (ABA) accumulation, the generation of reactive oxygen species (ROS), and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) was investigated in leaves of detached maize (Zea mays L.) plants exposed to -0.7 MPa water stress induced by polyethylene glycol (PEG 6000). Time-course analyses of ABA content, the production of ROS, and the activities of antioxidant enzymes in water-stressed leaves showed that a significant increase in the content of ABA preceded that of ROS, which was followed by a marked increase in the activities of these antioxidant enzymes. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA, and also reduced the increased generation of ROS and the up-regulation of these antioxidant enzymes in water-stressed leaves. A mild oxidative stress induced by paraquat, which generates O(2)(-) and then H(2)O(2), resulted in a significant enhancement in the activities of antioxidant enzymes in non-water-stressed leaves. Pretreatment with some ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NAD(P)H oxidase, diphenyleneiodonium (DPI), almost completely arrested the increase in ROS and the activities of these antioxidant enzymes induced by water stress or ABA treatment. These data suggest that water stress-induced ABA accumulation triggers the increased generation of ROS, which, in turn, leads to the up-regulation of the antioxidant defence system.  相似文献   

8.
We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.  相似文献   

9.
Dimethylthiourea (DMTU) progressively disappeared following reaction with increasing amounts of hydrogen peroxide (H2O2) in vitro. DMTU disappearance following reaction with H2O2 was inhibited by addition of catalase, but not aminotriazole-inactivated catalase (AMT-catalase), superoxide dismutase (SOD), mannitol, benzoate or dimethyl sulfoxide (DMSO) in vitro. By comparison, DMTU disappearance did not occur following addition of histamine, oleic acid, elastase, trypsin or leukotrienes in vitro. Addition of DMTU also decreased H2O2-mediated injury to bovine pulmonary artery endothelial cells (as reflected by LDH release) and DMTU disappeared according to both added amounts of H2O2 and corresponding degrees of injury. DMTU disappearance was also relatively specific for reaction with H2O2 in suspensions of endothelial cells where it was prevented by addition of catalase, but not AMT-catalase or SOD and did not occur following sonication or treatment with elastase, trypsin or leukotrienes. Addition of washed human erythrocytes (RBC) also prevented both H2O2 mediated injury and corresponding DMTU decreases in suspensions of endothelial cells. In addition, phorbol myristate acetate (PMA) and normal neutrophils, but not O2 metabolite deficient neutrophils from patients with chronic granulomatous disease (CGD), caused DMTU disappearance in vitro which was decreased by simultaneous addition of catalase, but not SOD, sodium benzoate or DMSO. Finally, addition of normal neutrophils (but not CGD neutrophils) and PMA caused DMTU disappearance and increased the concentrations of the stable prostacyclin derivative (PGF1 alpha) in supernatants of endothelial cell suspensions. In parallel, DMTU also decreased PMA and neutrophil-mediated PGF1 alpha increases in supernatants from endothelial cell monolayers. Our results indicate that DMTU can decrease H2O2 or neutrophil mediated injury to endothelial cells and that simultaneous measurement of DMTU disappearance can be used to improve assessment of the presence and toxicity of H2O2 as well as the H2O2 inactivating ability of scavengers, such as RBC, in biological systems.  相似文献   

10.
Although reactive oxygen species (ROS) have long been suspected to play a key role in Fas (CD95)-induced cell death, the identity of specific ROS involved in this process and the relationship between apoptotic and necrotic cell death induced by Fas are largely unknown. Using electron spin resonance (ESR) spectroscopy, we showed that activation of Fas receptor by its ligand (FasL) in macrophages resulted in a rapid and transient production of hydrogen peroxide (H2O2) and hydroxyl radicals (*OH). The response was visible as early as 5 min and peaked at approximately 45 min post-treatment. Morphological analysis of total death response (apoptosis vs. necrosis) showed dose and time dependency with apoptosis significantly increased at 6 h after the treatment, while necrosis remained at a baseline level. Only at a 35-fold increase in apoptosis did necrosis become significant. Inhibition of apoptosis by a pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (zVAD-fmk), significantly inhibited cell necrosis, indicating the linkage between the two events. Catalase (H2O2 scavenger) and deferoxamine (*OH scavenger) effectively inhibited the total death response as well as the ESR signals, while superoxide dismutase (SOD) (O2*- scavenger) had minimal effects. These results established the role for H2O2 and *OH as key participants in Fas-induced cell death and indicated apoptosis as a primary mode of cell death preceding necrosis. Because the Fas death pathway is implicated in various inflammatory and immunologic disorders, utilization of antioxidants and apoptosis inhibitors as potential therapeutic agents may be advantageous.  相似文献   

11.
The relationship between potassium deficiency and the antioxidative defense system has received little study. The aim of this work was to study the induction of oxidative stress in response to K(+) deficiency and the putative role of antioxidants. The tomato plants were grown in hydroponic systems to determine the role of reactive oxygen species (ROS) in the root response to potassium deprivation. Parameters of oxidative stress (malondialdehyde and hydrogen peroxide (H(2)O(2)) concentration), activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)) and antioxidant molecules (ascorbate (ASC) and glutathione) were investigated. H(2)O(2) was subcellularly located by laser confocal microscopy after potassium starvation in roots. During the first 24h, H(2)O(2) induced the cascade of the cellular response to low potassium, and ROS accumulation was located mainly in epidermal cells in the elongation zone and meristematic cells of the root tip and the epidermal cells of the mature zones of potassium starved roots. The activity of the antioxidative enzymes SOD, peroxidase and APX in potassium deprivation significantly increased, whereas CAT and DHAR activity was significantly depressed in the potassium starvation treatment compared to controls. GR did not show significant differences between control and potassium starvation treatments. Based on these results, we put forward the hypothesis that antioxidant molecule accumulations probably scavenge H(2)O(2) and might be regenerated by the ASC-glutathione cycle enzymes, such as DHAR and GR.  相似文献   

12.
血卟啉衍生物光敏引起NAD(P)H氧化作用研究   总被引:3,自引:0,他引:3  
血卟啉衍生物(HPD)光敏引起NAD(P)H氧化为中介的luminol化学发光(CL)与多种因素有关,如pH、激光功率密度、照光时间以及luminol、HPD以及底物NAD(P)H浓度等的改变都可引起CL的变化.当NAD(P)H浓度远远大于HPD浓度时,CL强度与HPD浓度成正比关系,这表明化学发光测定可以作为检测HPD光敏反应的指标,而且HPD敏化的NAD(P)H光氧化过程中化学发光的产生是与活性氧物质(ROS)有关的.选择性应用O_2、H_2O_2、OH、~1O_2的专一性清除剂研究ROS及~1O_2在HPD敏化的NAD(P)H氧化过程中的作用,其主要结果如下:(1)NAD(P)H光氧化为中介的lumlnol化学发光在水溶液中受到铜锌超氧化物岐化酶(CuZn-SOD)、过氧化氢酶(CAT)和甲酸钠(F)的抑制,在D_2O中受到His和Met的抑制.1μg/ml的CuZn-SOD抑制可达84%,但再增加酶量,抑制程度不再增加;CAT的抑制作用也出现类似情况;F的抑制作用较弱,在14—42mM浓度范围内,抑制程度不超过60%.(2)CuZn-SOD对化学发光的抑制作用随照光时间延长而持续下降,而CAT和F的抑制作用却随照光时间延长而有上升的趋势.His和Met在D_2O中的作用比较复杂.(3)观察伴随NAD(P)H光氧化失活时OD_(340)值的变化,发现ROS清除剂在H_2O中对失活有保护作用,而~1O_2猝灭剂His和Met在D_2O中对失活有保护作用.上述清除剂和猝灭剂  相似文献   

13.
为探究α-萘乙酸(NAA)对植物抗寒性的影响,以白菜型冬油菜‘陇油6号’为试验材料,经4℃、NAA+4℃、NAA+4℃+DPI(NADPH氧化酶抑制剂)、NAA+4℃+DMTU(H2O2清除剂)、NAA+4℃+U0126(MAPK抑制剂)和NAA+4℃+Tungstate(NO生成抑制剂)处理后,研究其对‘陇油6号’油菜的活性氧(H2O2和O2-·)含量,抗氧化酶活性,丙二醛(MDA)、可溶性糖、脯氨酸和叶绿素含量,抗氧化酶基因(APX、CAT、GR、SOD)、Rboh A-F、MAPK3/4/6、CBF和ICE1基因表达量的影响。结果表明:与4℃低温处理相比,NAA+4℃处理下油菜根系中的细胞活性、H2O2和O2-·含量以及叶片中的MDA含量均降低;根系中的抗氧化酶(CAT、SOD、APX和POD)活性、叶片中的可溶性糖及脯氨酸含量、叶绿素含量、上述相关基因的表达量均升高,说明α-萘乙酸处理油菜可显著提高低温胁迫下油菜幼苗的抗氧化能力、光合能力和相关基因的表达,增强油菜幼苗的抗寒性。与NAA+4℃处理相比,NAA+4℃+抑制剂(DPI、DMTU、U0126和Tungstate)处理下油菜幼苗中叶绿素含量、抗氧化酶基因表达量、Rboh A-F、MAPK3/4/6、CBF和ICE1基因表达量均呈不同程度降低,说明H2O2和NO信号分子、NADPH氧化酶和MAP激酶级联途径均参与了α-萘乙酸增强油菜幼苗耐寒性过程的调控。  相似文献   

14.
活性氧诱发人类11号染色体基因突变   总被引:1,自引:0,他引:1  
对体外产生的和内源性刺激产生的活性氧 (ROS)诱发人类 11号染色体 (Hchr 11)基因突变规律及其突变谱进行研究 .体外羟自由基 (·OH)用过氧化氢 (H2 O2 )与Fe2 + 反应产生 ,并用化学发光(CL)进行相对定量分析 ;内源性ROS用佛波醇酯 (PMA)刺激人外周血白细胞产生 ,并用CL和特异性抗氧化物检测和鉴定 ;用包含单条Hchr 11的人 中国仓鼠卵巢细胞 (AL)为靶 ,经CD59表面抗原抗体筛选突变细胞克隆 ,研究ROS诱发的Hchr 11基因突变 ;突变克隆细胞DNA用Hchr 11上 5种标志基因引物进行多重PCR分析 ,结合琼脂糖凝胶电泳绘制基因突变谱 .结果表明 ,体外ROS可诱发Hchr 11基因突变 ,且·OH诱发基因突变的能力明显强于H2 O2 ,两者的突变谱也存在明显差异 ;PMA可刺激人外周血白细胞产生大量的多种ROS ,并诱发Hchr 11基因突变 ,突变谱综合了H2 O2 和·OH的所有特征 ;一些抗氧化物对内源性产生的ROS诱发Hchr 11基因突变有明显抑制作用 .提示体外和内源性ROS可诱发Hchr 11基因突变 ,不同的活性氧分子诱发的基因突变可能具有特异性  相似文献   

15.
《Free radical research》2013,47(3):249-257
Abstract

Oxidative stress is believed to be an important mechanism underlying dopamine-induced neuronal damage. This study provides X-band electron spin resonance (ESR) spectroscopic evidence for reactive oxygen species (ROS) generation during dopamine metabolism. The authors induced excess dopamine metabolism in the mouse striatum by bathing it in tyramine-containing perfusate using microdialysis. The addition of tyramine to the perfusate raised the levels of extracellular dopamine and hydrogen peroxide significantly. The ESR signal from hydroxy-TEMPO decayed during tyramine perfusion and treatment with a monoamine-oxidase inhibitor or radical scavenger suppressed the signal decay. Decreases in the number of tyrosine hydroxylase-immunopositive fibres and in dopamine concentration after tyramine perfusion were observed. Moreover, the tyramine-perfused mice showed a marked methamphetamine-induced rotational response. Notably, these effects of tyramine were suppressed by the simultaneous perfusion of hydroxy-TEMPO. These findings indicate that the ROS generation, which was monitored by hydroxy-TEMPO, caused oxidative damage to the dopaminergic neurons.  相似文献   

16.
Polychaeta species like Laeonereis acuta (Nereididae) usually secrete great amounts of mucus that wrap the animal inside. Taking into account that fungi action in the sediment and UV radiation acting on dissolved organic matter in the water produces reactive oxygen species (ROS) like hydrogen peroxide (H(2)O(2)), it was considered that the mucus secretion could represent an antioxidant defense against environmental ROS. Antioxidant enzymes (catalase-CAT; superoxide dismutase-SOD; glutathione peroxidase-GPx and glutathione-S-transferase-GST) and total antioxidant capacity (TOSC) were determined in worms and mucus secretion. Higher (p<0.05) CAT, GPx and TOSC values were registered in mucus samples respect worms, SOD activity was similar (p>0.05) in both kind of samples, and absence of GST activity was observed in mucus samples, suggesting absence of catalyzed phase II reactions. In assays conducted with hepatoma cell lines exposed to H(2)O(2), it was verified that: (1) mucus co-exposure significantly (p<0.05) lowered DNA damage induced by H(2)O(2); (2) ROS production was significantly (p<0.05) reduced when cells were exposed simultaneously with mucus samples and H(2)O(2) respect H(2)O(2) alone. It can be concluded that the mucus production contributes substantially to the antioxidant defense system of the worm against environmental ROS through the interception or degradation of H(2)O(2), peroxyl and hydroxyl radicals.  相似文献   

17.
To elaborate the catalytic activity of Cu2+ of Cu,Zn-superoxide dismutase (SOD) in the generation of hydroxyl radical (.OH) from H2O2, we investigated the mechanism of inactivation of alpha 1-protease inhibitor (alpha 1-PI), mediated by H2O2 and Cu,Zn-SOD. When alpha 1-PI was incubated with 500 units/ml Cu,Zn-SOD and 1.0 mM H2O2, 60% of anti-elastase activity of alpha 1-PI was lost within 90 min. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that free .OH was indeed generated in the reaction of Cu,Zn-SOD/H2O2; this was substantiated by the almost complete eradication of .OH by either ethanol or dimethyl sulfoxide accompanied by the generation of carbon-centered radicals. .OH production and alpha 1-PI inactivation in the H2O2/SOD system became apparent at 30 min or later. Dimethyl sulfoxide and 5,5-dimethyl-1-pyrroline N-oxide protected inactivation of alpha 1-PI significantly in this system, indicating that alpha 1-PI inactivation was mediated by .OH. SOD activity decreased rapidly during the reaction with H2O2 for the initial 30 min. Time-dependent changes in the ESR signal of SOD showed the destruction of ligands for Cu2+ in SOD by H2O2 within this initial period. Thus we conclude that inactivation of alpha 1-PI is mediated in the H2O2/Cu,Zn-SOD system via the generation of .OH by free Cu2+ released from oxidatively damaged SOD.  相似文献   

18.
2-Benzoxazolinone (BOA), a well-known allelochemical with strong phytotoxicity, is a potential herbicidal candidate. The aim of the present study was to determine whether phytotoxicity of BOA is due to induction of oxidative stress caused by generation of reactive oxygen species (ROS) and the changes in levels of antioxidant enzymes induced in response to BOA. Effect of BOA was studied on electrolyte leakage, lipid peroxidation (LP), hydrogen peroxide (H(2)O(2)) generation, proline (PRO) accumulation, and activities of antioxidant enzymes-superoxide dismutase (SOD, 1.15.1.1), ascorbate peroxidase (APX, 1.11.1.11), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6) and glutathione reductase (GR, 1.6.4.2) in Phaseolus aureus (mung bean). BOA significantly enhanced malondialdehyde (MDA) content, a product of LP, in both leaves and roots of mung bean. The amount of H(2)O(2), a product of oxidative stress, and endogenous PRO increased many-fold in response to BOA. Accumulation of PRO, MDA and H(2)O(2) indicates the cellular damage in the target tissue caused by ROS generated by BOA. In response to BOA, there was a significant increase in the activities of scavenging enzymes SOD, APX, GPX, CAT, and GR in root and leaf tissue of mung bean. At 5 mM BOA, GR activity in roots showed a nearly 22-fold increase over that in control. The present study concludes that BOA induces oxidative stress in mung bean through generation of ROS and upregulation of activities of various scavenging enzymes.  相似文献   

19.
We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.  相似文献   

20.
To determine whether reactive oxygen species (ROS) play an essential role in hypoxic pulmonary vasoconstriction (HPV) and the cellular locus of ROS production and action during HPV, we measured internal diameter (ID) at constant transmural pressure, lucigenin-derived chemiluminescence (LDCL), and electron paramagnetic resonance (EPR) spin adduct spectra in small distal porcine pulmonary arteries, and dichlorofluorescein (DCF) fluorescence in myocytes isolated from these arteries. Hypoxia (4% O2) decreased ID, increased DCF fluorescence, tended to increase LDCL, and in some preparations produced EPR spectra consistent with hydroxyl and alkyl radicals. Superoxide dismutase (SOD, 150 U/ml) or SOD + catalase (CAT, 200 U/ml) did not alter ID during normoxia but reduced or abolished the constriction induced by hypoxia. SOD also blocked HPV in endothelium-denuded arteries after restoration of the response by exposure to 10-10 M endothelin-1. Confocal fluorescence microscopy demonstrated that labeled SOD and CAT entered pulmonary arterial myocytes. SOD, SOD + CAT, and CAT blocked the increase in DCF fluorescence induced by hypoxia, but SOD + CAT and CAT also caused a stable increase in fluorescence during normoxia, suggesting that CAT diminished efflux of DCF from cells or oxidized the dye directly. We conclude that HPV required increased concentrations of ROS produced by and acting on pulmonary arterial smooth muscle rather than endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号