首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two-nanosecond molecular dynamics simulations of the crystal lattice of an active complex of pT160-CDK2 kinase/cyclin A/ATP-Mg2+/substrate were performed. The simulations showed that the structures of the wild-type CDK2 complex and the mutant CDK2 complex involving the substitution G16S-CDK2 corresponding to the yeast substitution G20S-CDC28 differ noticeably and the differences between the structural conformations are most pronounced in the regions that play a key role in the kinase functioning. The results of the computer calculations were used to consider the structural elements that may affect the kinase activity, the regulatory phosphorylation, and the binding of protein kinase with cyclins and substrates.  相似文献   

2.
In order to develop promising cyclin dependent kinase 1 inhibitors, homology modeling, docking and molecular dynamic simulation techniques were applied to get insight into the functional and structural properties of cyclin dependent kinase 1 (CDK1). Since there is no reported CDK1 crystal structural data, the three dimensional structure of CDK1 was constructed based on homology modeling. An extensive dynamic simulation was also performed on a Flavopiridol-CDK1 complex for probing the binding pattern of Flavopiridol in the active site of CDK1. The binding modes of other inhibitors to CDK1 were also proposed by molecular docking. The structural requirement for developing more potent CDK1 inhibitors was obtained by the above-mentioned molecular simulations and pharmacophore modeling.  相似文献   

3.
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.  相似文献   

4.
The cyclin-dependent kinase-activating kinase (CAK) catalyzes the phosphorylation of the cyclin-dependent protein kinases (CDKs) on a threonine residue (Thr160 in human CDK2). The reaction is an obligatory step in the activation of the CDKs. In higher eukaryotes, the CAK complex has been characterized in two forms. The first consists of three subunits, namely CDK7, cyclin H, and an assembly factor called MAT1, while the second consists of phospho-CDK7 and cyclin H. Phosphorylation of CDK7 is essential for cyclin association and kinase activity in the absence of the assembly factor MAT1. The Xenopus laevis CDK7 phosphorylation sites are located on the activation segment of the kinase at residues Ser170 and at Thr176 (the latter residue corresponding to Thr160 in human CDK2). We report the expression and purification of X. laevis CDK7/cyclin H binary complex in insect cells through coinfection with the recombinant viruses, AcCDK7 and Accyclin H. Quantities suitable for crystallization trials have been obtained. The purified CDK7/cyclin H binary complex phosphorylated CDK2 and CDK2/cyclin A but did not phosphorylate histone H1 or peptide substrates based on the activation segments of CDK7 and CDK2. Analysis by mass spectrometry showed that coexpression of CDK7 with cyclin H in baculoviral-infected insect cells results in phosphorylation of residues Ser170 and Thr176 in CDK7. It is assumed that phosphorylation is promoted by kinase(s) in the insect cells that results in the correct, physiologically significant posttranslational modification. We discuss the occurrence of in vivo phosphorylation of proteins expressed in baculoviral-infected insect cells.  相似文献   

5.
Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome.  相似文献   

6.
The capacity of the cyclin D-dependent kinase to promote G(1) progression through modulation of RB.E2F is well documented. We now demonstrate that the cyclin D1/CDK4 kinase binds to components of the MCM complex. MCM7 and MCM3 were identified as cyclin D1-binding proteins. Catalytically active cyclin D1/CDK4 complexes were incorporated into chromatin-bound protein complexes with the same kinetics as MCM7 and MCM3, where they associated specifically with MCM7. Although the cyclin D1-dependent kinase did not phosphorylate MCM7, active cyclin D1/CDK4, but not cyclin E/CDK2, did catalyze the dissociation of an RB.MCM7 complex. Finally, expression of an active D1/CDK4 kinase but not cyclin E/CDK2 promoted the removal of RB from chromatin-bound protein complexes. Our data suggest that D1/CDK4 complexes play a direct role in altering an inhibitory RB.MCM7 complex possibly allowing for setting of the origin in preparation for DNA replication.  相似文献   

7.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G2 arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest. Additionally our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.  相似文献   

8.
Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of the Thr160 phosphoryl group and the T-loop conformation were investigated. These results provide a dynamic view of CDKs revealing intermediate conformations not yet characterized for CDK members other than CDK2, which will be useful for the design of inhibitors targeting critical conformational transitions.  相似文献   

9.
Cyclin-dependent kinase 5 (CDK5), unlike other CDKs, is active only in neuronal cells where its neuron-specific activator p35 is present. However, it phosphorylates serines/threonines in S/TPXK/R-type motifs like other CDKs. The tail portion of neurofilament-H contains more than 50 KSP repeats, and CDK5 has been shown to phosphorylate S/T specifically only in KS/TPXK motifs, indicating highly specific interactions in substrate recognition. CDKs have been shown to have a high preference for a basic residue (lysine or arginine) as the n+3 residue, n being the location in the primary sequence of a phosphoacceptor serine or threonine. Because of the lack of a crystal structure of a CDK-substrate complex, the structural basis for this specific interaction is unknown. We have used site-directed mutagenesis ("charged to alanine") and molecular modeling techniques to probe the recognition interactions for substrate peptide (PKTPKKAKKL) derived from histone H1 docked in the active site of CDK5. The experimental data and computer simulations suggest that Asp86 and Asp91 are key residues that interact with the lysines at positions n+2 and/or n+3 of the substrates.  相似文献   

10.
A series of purine nucleoside analogues bearing an aryl and hetaryl group in position 6 were prepared and their biological activities were assessed by in vitro CDK1/Cyclin B1 and CDK2/Cyclin A2 kinase assay. From the synthesized chemicals, three Xylocydine derivatives 3h, 3i, and 3j exhibited specific inhibitory activities on CDK2/Cyclin A2 with IC(50) values of 4.6, 4.8, and 55 μM, respectively. Those three compounds all induced G1/S phase arrest in Human epithelial carcinoma cell line (HeLa), and the results suggested they may inhibit CDK2 activity in vitro. Furthermore, molecular modeling study, their docking into Cyclin Dependant Kinase 2 (CDK2) active site showed high docking scores. Taken together, these data suggest that, those three compounds are good inhibitors of CDK2 for studying this kinase signal transduction pathway in cell system.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor p27 is degraded at the G(0)-G(1) transition of the cell cycle by the ubiquitin-proteasome pathway in a Skp2-independent manner. We recently identified a novel ubiquitin ligase, KPC (Kip1 ubiquitylation-promoting complex), consisting of KPC1 and KPC2, which regulates the ubiquitin-dependent degradation of p27 at G(1) phase. We have now investigated the structural requirements for the interactions of KPC1 with KPC2 and p27. The NH(2)-terminal region of KPC1 was found to be responsible for binding to KPC2 and to p27. KPC1 mutants that lack this region failed to mediate polyubiquitylation of p27 in vitro and expression of one such mutant delayed p27 degradation in vivo. We also generated a series of deletion mutants of p27 and found that KPC failed to polyubiquitylate a p27 mutant that lacks the CDK inhibitory domain. Interestingly, the cyclin E.CDK2 complex prevented both the interaction of KPC with p27 as well as KPC-mediated polyubiquitylation of p27. A complex of cyclin E with a kinase-negative mutant of CDK2 also exhibited these inhibitory effects, suggesting that cyclin E.CDK2 competes with KPC1 for access to the CDK inhibitory domain of p27. These results suggest that free p27 is recognized by the NH(2)-terminal region of KPC1, which also associates with KPC2, and that p27 is then polyubiquitylated by the COOH-terminal RING-finger domain of KPC1.  相似文献   

12.
Cyclin from herpesvirus saimiri (Vcyclin) preferentially forms complexes with cyclin-dependent kinase 6 (CDK6) from primate host cells. These complexes show higher kinase activity than host cell CDKs in complex with cellular cyclins and are resistant to cyclin-dependent inhibitory proteins (CDKIs). The crystal structure of human CDK6--Vcyclin in an active state was determined to 3.1 A resolution to better understand the structural basis of CDK6 activation by viral cyclins. The unphosphorylated CDK6 in complex with Vcyclin has many features characteristic of cyclinA-activated, phosphorylated CDK2. There are, however, differences in the conformation at the tip of the T-loop and its interactions with Vcyclin. Residues in the N-terminal extension of Vcyclin wrap around the tip of the CDK6 T-loop and form a short beta-sheet with the T-loop backbone. These interactions lead to a 20% larger buried surface in the CDK6--Vcyclin interface than in the CDK2--cyclinA complex and are probably largely responsible for the specificity of Vcyclin for CDK6 and resistance of the complex to inhibition by INK-type CDKIs.  相似文献   

13.
The CDK-interacting protein phosphatase KAP dephosphorylates phosphoThr-160 (pThr-160) of the CDK2 activation segment, the site of regulatory phosphorylation that is essential for kinase activity. Here we describe the crystal structure of KAP in association with pThr-160-CDK2, representing an example of a protein phosphatase in complex with its intact protein substrate. The major protein interface between the two molecules is formed by the C-terminal lobe of CDK2 and the C-terminal helix of KAP, regions remote from the kinase-activation segment and the KAP catalytic site. The kinase-activation segment interacts with the catalytic site of KAP almost entirely via the phosphate group of pThr-160. This interaction requires that the activation segment is unfolded and drawn away from the kinase molecule, inducing a conformation of CDK2 similar to the activated state observed in the CDK2/cyclin A complex.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

15.
He W  Staples D  Smith C  Fisher C 《Journal of virology》2003,77(19):10566-10574
Addition of human papillomavirus (HPV) E7 CDK2/cyclin A or CDK2/cyclin E, purified from either insect cells or bacteria, dramatically upregulates histone H1 kinase activity. Activation is substrate specific, with a smaller effect noted for retinoblastoma protein (Rb). The CDK2 stimulatory activity is equivalent in high-risk (HPV type 16 [HPV16] and HPV31) and low-risk (HPV6b) E7. Mutational analyses of HPV16 E7 indicate that the major activity resides in amino acids 9 to 38, spanning CR1 and CR2, and does not require casein kinase II or Rb-binding domain functions. Synthetic peptides spanning HPV16 amino acid residues 9 to 38 also activate CDK2. Peptides containing this sequence that carry biotin on the carboxy terminus, as well as a photoactivated cross-linking group (benzophenone), also activate the complex and covalently associate with the CDK2/cyclin A complex in a specific manner requiring UV. Cross-linking studies that use protein monomers detect association of the E7 peptides with cyclin A but not CDK2. Together, our results indicate a novel mechanism whereby E7 promotes HPV replication by directly altering CDK2 activity and substrate specificity.  相似文献   

16.
17.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.  相似文献   

18.
Indole-3-carbinol (I3C), a dietary compound found in cruciferous vegetables, induces a robust inhibition of CDK2 specific kinase activity as part of a G1 cell cycle arrest of human breast cancer cells. Treatment with I3C causes a significant shift in the size distribution of the CDK2 protein complex from an enzymatically active 90 kDa complex to a larger 200 kDa complex with significantly reduced kinase activity. Co-immunoprecipitations revealed an increased association of both a 50 kDa cyclin E and a 75 kDa cyclin E immunoreactive protein with the CDK2 protein complex under I3C-treated conditions, whereas the 90 kDa CDK2 protein complexes detected in proliferating control cells contain the lower molecular mass forms of cyclin E. I3C treatment caused no change in the level of CDK2 inhibitors (p21, p27) or in the inhibitory phosphorylation states of CDK2. The effects of I3C are specific for this indole and not a consequence of the cell cycle arrest because treatment of MCF-7 breast cancer cells with either the I3C dimerization product DIM or the anti-estrogen tamoxifen induced a G1 cell cycle arrest with no changes in the associated cyclin E or subcellular localization of the CDK2 protein complex. Taken together, our results have uncovered a unique effect of I3C on cell cycle control in which the inhibition of CDK2 kinase activity is accompanied by selective alterations in cyclin E composition, size distribution, and subcellular localization of the CDK2 protein complex.  相似文献   

19.
20.
We describe a refined homology model of a CDK1/cyclin B complex that was previously used for the structure-based optimization of the Paullone class of inhibitors. The preliminary model was formed from the homologous regions of the deposited CDK2/cyclin A crystal structure. Further refinement of the CDK1/cyclin B complex was accomplished using molecular mechanics and hydropathic analysis with a protocol of constraints and local geometry searches. For the most part, our CKD1/cyclin B homology model is very similar to the high resolution CDK2/cyclin A crystal structure regarding secondary and tertiary features. However, minor discrepancies between the two kinase structures suggest the possibility that ligand design may be specifically tuned for either CDK1 or CDK2. Our examination of the CDK1/cyclin B model includes a comparison with the CDK2/cyclin A crystal structure in the PSTAIRE interface region, connecting portions to the ATP binding domain, as well as the ATP binding site itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号