首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plans to introduce genetically engineered microorganisms into the environment has led to concerns over safety and has raised questions about how to detect and to contain such microorganisms. Specific gene sequences, such as lacZ, have been inserted into genetically engineered microorganisms to permit their phenotypic detection. Molecular methods have been developed based upon recovery of DNA from environmental samples and gene probe hybridization to specific diagnostic gene sequences for the specific detection of genetically engineered microorganisms. DNA amplification using the polymerase chain reaction has been applied to enhance detection sensitivity so that single gene targets can be detected. Detection of messenger RNA has permitted the monitoring of gene expression in the environment. The use of reporter genes, such as the lux gene for bioluminescence, likewise has permitted the observation of gene expression. Conditional lethal constructs have been developed as models for containment of genetically engineered microorganisms. Suicide vectors, based upon the hok gene have been developed as model containment systems.  相似文献   

2.
A method has been devised for directly detecting and monitoring genetically engineered microorganisms (GEMs) by using in vitro amplification of the target DNAs by a polymerase chain reaction and then hybridizing the DNAs with a specific oligonucleotide or DNA probe. A cloned 0.3-kilobase napier grass (Pennisetum purpureum) genomic DNA that did not hybridize to DNAs isolated from various microorganisms, soil sediments, and aquatic environments was inserted into a derivative of a 2,4-dichlorophenoxyacetic acid-degradative plasmid, pRC10, and transferred into Escherichia coli. This genetically altered microorganism, seeded into filter-sterilized lake and sewage water samples (10(4)/ml), was detected by a plate count method in decreasing numbers for 6 and 10 days of sample incubation, respectively. The new method detected the amplified unique marker (0.3-kilobase DNA) of the GEM even after 10 to 14 days of incubation. This method is highly sensitive (it requires only picogram amounts of DNA) and has an advantage over the plate count technique, which can detect only culturable microorganisms. The method may be useful for monitoring GEMs in complex environments, where discrimination between GEMs and indigenous microorganisms is either difficult or requires time-consuming tests.  相似文献   

3.
Microbial gene expression in soil: methods, applications and challenges   总被引:10,自引:0,他引:10  
About 99% of soil microorganisms are unculturable. However, advances in molecular biology techniques allow for the analysis of living microorganisms. With the advent of new technologies and the optimization of previous methods, various approaches to studying gene expression are expanding the field of microbiology and molecular biology. Methods used for RNA extraction, DNA microarrays, real-time PCR, competitive RT-PCR, stable isotope probing and the use of reporter genes provide methods for detecting and quantifying gene expression. Through the use of these methods, researchers can study the influence of soil environmental factors such as nutrients, oxygen status, pH, pollutants, agro-chemicals, moisture and temperature on gene expression and some of the mechanisms involved in the responses of cells to their environment. This review will also address information gaps in bacterial gene expression in soil and possible future research to develop an understanding of microbial activities in soil environments.  相似文献   

4.
Toxic cyanobacteria pose a significant hazard to human health and the environment. The recent characterisation of cyanotoxin synthetase gene clusters has resulted in an explosion of molecular detection methods for these organisms and their toxins. Conventional polymerase chain reaction (PCR) tests targeting cyanotoxin biosynthesis genes provide a rapid and sensitive means for detecting potentially toxic populations of cyanobacteria in water supplies. The adaptation of these simple PCR tests into quantitative methods has additionally enabled the monitoring of dynamic bloom populations and the identification of particularly problematic species. More recently, DNA microarray technology has been applied to cyanobacterial diagnostics offering a high-throughput option for detecting and differentiating toxic genotypes in complex samples. Together, these molecular methods are proving increasingly important for monitoring water quality.  相似文献   

5.
6.
DNA gene probes may become extremely useful in studying gene transfer and adaptation mechanisms in natural bacterial communities, and in the laboratory. This technology allows the detection of specific gene sequence(s) in bacterial species, and can be used to find and monitor recombinant DNA clones in microorganisms being considered for release into the natural environment. It may provide a new generation of highly specific tests that offers advantages over the classical approaches for identifying specific organisms.  相似文献   

7.
8.
Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s).  相似文献   

9.
土壤微生物PCR及分子杂交检测   总被引:6,自引:0,他引:6  
PCR技术在环境微生物的检测方面已得到越来越广泛的应用,Stefan等[1]利用PCR技术检测土壤中的转基因细菌,后来用于检测土壤中不可培养的微生物[2],跟踪环境中的特定细菌或DNA[3],揭示土壤生态系统的基因多样性[4]等。利用PCR技术来检测…  相似文献   

10.
Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.  相似文献   

11.
Targeted gene modification for gene therapy of stem cells   总被引:1,自引:0,他引:1  
Ideally, gene therapy would correct the specific gene defect without adding potentially harmful extraneous DNA sequences. Such correction can be obtained with homologous recombination between input DNA sequences and identical (homologous) sequences in the genomic target gene. The development of techniques for obtaining virtually pure populations of hematopoietic stem cells should permit the use of the highly efficient nuclear microinjection methods for transfer of DNA. These techniques combined with new highly sensitive methods for detecting cells with the specified genetic modification of nonexpressed genes would make homologous recombination-mediated gene therapy feasible for hematopoietic stem cells. These advances are reviewed with particular emphasis on approaches to targeted gene modification of hematopoietic stem cells and speculation on directions for future research.  相似文献   

12.
Previously we described a novel gene tagging method, using the moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955, to identify microorganisms destined for release into the environment. Here, we used the engineered strain Pseudomonas fluorescens PF5MT12 carrying the moc region integrated into the bacterial chromosome to demonstrate the usefulness of the markers for detection and direct selection of marked organisms present in soil samples. Using this system, we routinely detected population levels as low as 10(sup2) CFU per g of soil sampled. In addition to direct selection, we developed an immunologically based assay using MOP cyclase, a unique enzyme associated with moc, as the epitope for detecting the tagged organism. The colony immunoblot assay proved to be highly specific and without any false-positive signals when used to identify organisms cultured from soil on nonselective medium. The numbers of colonies that were immunoreactive with the anti-MOP cyclase antibody were essentially equal to those that grew out on selection plates. This indicates that MOP cyclase can be used as a marker and that we can use nonselective medium to retrieve the marked genetically engineered microorganisms and then identify them by using colony immunoblot assays. These direct selection and colony immunoblot methods provide a sensitive and accurate strategy for identifying and enumerating marked organisms recovered from soil samples. We also developed a rapid assay for MOP cyclase that does not require cell permeabilization with toluene. This assay can be used to verify tagged organisms isolated by other methods or to screen large numbers of colonies for the tag following nonselective isolation.  相似文献   

13.
Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique for the amplification of DNA under isothermal conditions. For the first time, we applied this method to develop a simple and quantitative monitoring method for environmental microorganisms targeting amoA gene in ammonia-oxidizing bacteria. Quantitative analysis was performed first by measuring fluorescence derived from an intercalation dye using a real-time thermal cycler, and then by measuring the turbidity of the reaction solution using a real-time turbidimeter. As a result, it was possible to quantify the initial amoA DNA concentration from an environment with a sensitivity down to 10(2) DNA copies of target DNA and a dynamic range of 7-9 orders in magnitude. Background DNA from nontargeted bacteria (Pseudomonas denitrificans) that does not encode amoA gene did not affect the quantitative capability of LAMP. Over results suggested that the real-time LAMP is effective for monitoring microorganisms and their gene expression in environments.  相似文献   

14.
A novel method using a moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955 was developed as a tag to identify genetically modified microorganisms released into the environment. Pseudomonas fluorescens 1855.344, a plant-growth-promoting rhizosphere bacterium, was chosen as the organism in which to develop and test the system. moc genes carried by pYDH208, a cosmid clone containing a 20-kb segment of the octopine-mannityl opine-type Ti plasmid, conferred on P. fluorescens strains the capacity to utilize mannopine and agropine (AGR) as a sole source of carbon and energy. Modified P. fluorescens strains containing moc or moc::nptII inserted into a chromosomal site were constructed by marker exchange. One such modified strain, PF5MT12, utilized AGR as a sole carbon source and contained detectable levels of mannopine cyclase, an easily assayable enzyme encoded by the moc region. Catabolism of AGR could be used to recover selectively the marked strain from mixed populations containing a large excess of closely related bacteria. Nucleic acid-based detection strategies were developed on the basis of the unique fusion region between Agrobacterium DNA and Pseudomonas DNA in strain PF5MT12. The specificity and sensitivity of detection of PF5MT12 were enhanced by amplifying the fused DNA region by using PCR. The target fragment could be detected at levels of sensitivity comparable to those of other described PCR-based gene tags, even in the presence of high levels of Agrobacterium, Pseudomonas, or Escherichia coli DNA. This gene tag strategy gives a method for direct selection and enumeration of the marked strain from mixtures containing a large excess of closely related bacteria and a sensitive and highly specific system for detection by PCR amplification of the target fragment even in the presence of large amounts of DNA from related or unrelated organisms.  相似文献   

15.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

16.
Microarrays have revolutionized gene expression analysis as they allow for highly parallel monitoring of mRNA levels of thousands of genes in a single experiment. Since their introduction some 15 years ago, substantial progress has been achieved with regard to, e.g., faster or more sensitive analyses. In this review, interesting new approaches for a more sensitive detection of specific mRNAs will be highlighted. Particularly, the potential of electrical DNA chip formats that allow for faster mRNA analyses will be discussed.  相似文献   

17.
Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and propidium monoazide (PMA) is one of the alternative approaches to detecting and quantifying viable cells by quantitative PCR. These compounds have the ability to penetrate only into dead cells with compromised membrane integrity and intercalate with DNA via their photoinducible azide groups and in turn inhibit DNA amplification during PCRs. PMA has been successfully used in different studies and microorganisms, but it has not been evaluated sufficiently for complex environmental samples such as biosolids. In this study, experiments were performed with Escherichia coli ATCC 25922 as the model organism and the uidA gene as the target sequence using real-time PCR via the absolute quantification method. Experiments with the known quantities of live and dead cell mixtures showed that PMA treatment inhibits PCR amplification from dead cells with over 99% efficiency. The results also indicated that PMA-modified quantitative PCR could be successfully applied to biosolids when the total suspended solids (TSS) concentration is at or below 2,000 mg·liter(-1).  相似文献   

18.
The past decade has witnessed the construction of linkage and physical maps defining quantitative trait loci (QTL) in various domesticated species. Targeted chromosomal regions are being further characterized through the construction of bacterial artificial chromosome (BAC) contigs in order to isolate and characterize genes contributing towards phenotypic variation. Whole-genome BAC contigs are also being constructed that will serve as the tiling path for genomic sequencing. Harvesting this genetic information for biological gain requires either genetic selection or the production of genetically modified animals. This later approach when coupled with nuclear transfer technology (NT) provides "clones" of genetically modified animals. However, to date, the production of genetically modified animals has been limited to either microinjection of small gene constructs into embryos with random insertion or complex gene constructs designed to knock-out targeted gene expression. Neither of these approaches provides for introducing directed genetic manipulation allowing for allelic substitution [knock-in], subsequent analyses of gene expression, and cloning. An alternative approach utilizing genomic sequence information and recombineering to direct gene targeting of specific porcine BACs is presented here.  相似文献   

19.
To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50 degrees C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was approximately 5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 x 10(7) cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r(2) = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r(2) = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.  相似文献   

20.
Recombinant DNA methodology has greatly increased our knowledge of the molecular pathology of the human genome at the same time as providing the means of diagnosing inherited disease at the DNA level. Direct detection and analysis of a wide range of genetic lesions are now possible using cloned gene or oligonucleotide probes or by direct sequencing of the disease gene(s). In addition, the use of restriction fragment length polymorphisms (RFLPs) within and around these genes as indirect genetic markers has potentiated the tracking of disease alleles in affected pedigrees in cases where direct analysis is not yet feasible. RFLPs associated with linked anonymous DNA segments may also be used not only to diagnose hitherto undetectable disease states, but also for the chromosomal localization of the loci responsible. We present here an update to our previous list of reports describing the direct and indirect analysis/diagnosis of human inherited disease. This compilation is intended to serve as a guide to current molecular genetic approaches in diagnostic medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号