首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma levels of norepinephrine (NE) and epinephrine (EPI) were measured in male Sprague-Dawley rats before and at several times after training injections of agents known to enhance or to impair later retention performance for a one-trial inhibitory (passive) avoidance task. Two days before testing, each animal was surgically prepared with a chronic tail artery catheter that allows for repeated blood sampling in unhandled rats. Exposure to a single, intense training footshock (3.0 mA, 2.0 sec duration) resulted in an immediate but transient increase in plasma levels of EPI and to a lesser extent NE. Plasma levels of both catecholamines did not differ between unshocked controls and animals that received a weak training footshock (0.6 mA, 0.5 sec duration). An injection of EPI at a dose that enhances retention performance (0.1 mg/kg, sc) resulted in increments in plasma EPI levels of 0.8-1.9 ng/ml from 5 to 40 min after injection. An injection of EPI (0.5 mg/kg, sc) at a dose that produces retrograde amnesia resulted in increments in plasma EPI ranging from 3.7 to 4.5 ng/ml during the 40 min after injection. Plasma NE levels were not significantly altered following an EPI injection. A single injection of adrenocorticotropin (ACTH, 0.3 or 3.0 IU per rat) did not alter the plasma catecholamine responses to training with a weak footshock. Similarly, the synthetic ACTH analog, Organon 2766 (125 or 250 mg/Kg) did not affect plasma catecholamines in untrained (unshocked) rats.These results demonstrate that significant increments in plasma levels of NE and EPI occur shortly after inhibitory avoidance training. Furthermore, an injection of EPI that enhances retention of an inhibitory avoidance task mimics the magnitude, though not the temporal characteristics, of the endogenous adrenal medullary response to a training footshock. Other hormonal treatments (ACTH and Organon 2766) which enhance memory storage do not affect plasma levels of NE and EPI.  相似文献   

2.
The aim of the current investigation was to ascertain the role of ACTH and adrenal hormones on adrenomedullary and glycemic functions in soft-shelled turtles, Lissemys punctata punctata. All the experiments were carried out on sexually immature animals. Findings revealed that: (1) ACTH administration (0.5 IU/1.0 IU/2.0 IU per 100 g body wt. daily for 10 days) in all doses stimulated adrenomedullary function by increasing medullary cell nuclear diameter with elevations of norepinephrine, epinephrine and blood sugar levels. Only moderate and higher doses (50 microg/100 microg per 100 g body wt. daily for 10 days) of dexamethasone suppressed adrenomedullary activity and blood sugar level by reversing the changes to those of ACTH; the responses were dose-dependent. But these changes were no longer observed after ACTH treatment in dexamethasone (DMS) recipients (DMS: 100 microg/ 100 g body wt daily for the first 10 days and ACTH: 0.5 IU / 100 g body wt daily for the next 10 days); (2) Only moderate and higher doses (50 microg/100 microg per 100 g body wt daily for 10 days) of corticosterone increased adrenomedullary activity and blood sugar level and the responses were also dose-dependent. But aldosterone treatment in all doses (same as for corticosterone) had no significant effect on the adrenal medulla or blood sugar level; (3) Only moderate and higher doses of norepinephrine or epinephrine (same as for corticosterone) caused adrenomedullary atrophy with depletions of norepinephrine and epinephrine levels but elevated the glycemic level. The findings are briefly discussed.  相似文献   

3.
During sepsis, limited data on the survival effects of vasopressors are available to guide therapy. Therefore, we compared the effects of three vasopressors on survival in a canine septic shock model. Seventy-eight awake dogs infected with differing doses of intraperitoneal Escherichia coli to produce increasing mortality were randomized to receive epinephrine (0.2, 0.8, or 2.0 microg.kg(-1).min(-1)), norepinephrine (0.2, 1.0, or 2.0 microg.kg(-1).min(-1)), vasopressin (0.01 or 0.04 U/min), or placebo in addition to antibiotics and fluids. Serial hemodynamic and biochemical variables were measured. Increasing doses of bacteria caused progressively greater decreases in survival (P <0.06), mean arterial pressure (MAP) (P <0.05), cardiac index (CI) (P <0.02), and ejection fraction (EF) (P=0.02). The effects of epinephrine on survival were significantly different from those of norepinephrine and vasopressin (P=0.03). Epinephrine had a harmful effect on survival that was significantly related to drug dose (P=0.02) but not bacterial dose. Norepinephrine and vasopressin had beneficial effects on survival that were similar at all drug and bacteria doses. Compared with concurrent infected controls, epinephrine caused greater decreases in CI, EF, and pH, and greater increases in systemic vascular resistance and serum creatinine than norepinephrine and vasopressin. These epinephrine-induced changes were significantly related to the dose of epinephrine administered. In this study, the effects of vasopressors were independent of severity of infection but dependent on the type and dose of vasopressor used. Epinephrine adversely affected organ function, systemic perfusion, and survival compared with norepinephrine and vasopressin. In the ranges studied, norepinephrine and vasopressin have more favorable risk-benefit profiles than epinephrine during sepsis.  相似文献   

4.
In 5-6-week-old cockerels the circulating corticosterone concentration was significantly increased in birds i.m. injected 30 and 60 min previously with adrenaline (0.33 mg/kg), noradrenaline (0.33 mg/kg) or a beta-adrenergic agonist (isoprotorenol, 1 mg/kg), but was reduced in birds pretreated with an alpha-adrenergic agonist (phenylephrine, 1 mg/kg). The stimulation of corticosterone secretion induced by a 30 min period of forced exercise (0.04 km/hr; 0 degree incline) was potentiated by noradrenaline, isoprotorenol and phentolamine pretreatment. In response to exogenous adrenocorticotrophin (ACTH, 8 i.u./kg), administered i.v., the increase in the plasma corticosterone concentration was elevated above that in the controls in birds pretreated with adrenaline, noradrenaline, isoprotorenol or phentolamine (an alpha antagonist administered at 1 mg/kg). The corticosterone response to ACTH was suppressed by phenylephrine pretreatment. These results demonstrate that both basal and stimulated levels of adrenocortical activity may be subtly regulated by adrenergic mechanisms acting at a site(s) within the hypothalamo-pituitary-adrenal axis.  相似文献   

5.
The present study investigated the involvement of amygdala noradrenergic (NE) and serotonergic (5-HT) systems in memory storage processing. Rats bearing chronic cannulae in the amygdala were trained on a one-trial inhibitory avoidance task and tested for retention 24 hrs later. Five days prior to training, rats received intra-amygdala infusion of vehicle or various doses of N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4)-a NE-specific neurotoxin when given peripherally. Results showed that pretraining intra-amygdala infusion of 10.0 micrograms or 30.0 micrograms of DSP-4 impaired retention. Further, 30.0 micrograms of DSP-4 also abolished the memory enhancing effect of epinephrine (E) injected peripherally. However, local infusion of DSP-4 depleted not only NE but also 5-HT and DA substantially. Subsequent experiments found that the retention deficit induced by 30.0 micrograms of DSP-4 could be ameliorated by 0.2 microgram NE but not by 5-HT at a wide range of doses infused into the amygdala shortly after training, which ascribed the deficit to depletion of NE. After protecting the 5-HT terminals by a pretreatment of fluoxetine (15.0 mg/kg), pretraining intra-amygdala infusion of 30.0 micrograms DSP-4 shifted the memory-enhancing dose of E from 0.1 mg/kg to 1.0 mg/kg. In contrast, pretraining intra-amygdala infusion of 15.0 micrograms 5,7-dihydroxytryptamine (5,7-DHT) or DSP-4 with a pretreatment of desipramine (DMI, 25.0 mg/kgx2) to protect NE terminals failed to impair retention or attenuate the memory enhancing effect of 0.1 mg/kg E injected peripherally. These findings, taken together, suggest that the memory modulatory effect of peripheral E involved, at least partially, the amygdala NE system.  相似文献   

6.
The present study was conducted to characterize the in vivo effects of epinephrine administration on levels of pituitary cyclic AMP and plasma hormones. Rats were injected with saline or epinephrine bitartrate (1 mg/kg lP) and sacrificed by decapitation 1, 5, 15, 30 or 60 min post-injection. Levels of pituitary cyclic AMP and plasma ACTH, beta-endorphin, beta-LPH, corticosterone and prolactin were determined by radioimmunoassays. The injection procedure itself was somewhat stressful as demonstrated by increased levels of plasma prolactin and ACTH 5 min following either saline or epinephrine injection. This "stress" response was rapid and short-lasting for the pituitary hormones. The response of the adrenal hormone, corticosterone, to saline injection was slower in onset and longer in duration. Pituitary cyclic AMP levels did not increase following saline injection. Epinephrine-injected animals displayed markedly elevated plasma levels of ACTH, beta-endorphin and beta-LPH at 15, 30 and 60 min as compared to control or saline-injected rats. In addition, levels of pituitary cyclic AMP were increased over 10 fold at these times. Levels of plasma prolactin, a stress-responsive hormone, were not significantly increased in epinephrine-injected animals as compared to saline-injected rats indicating that these later responses seem to be specific to epinephrine rather than to stress.  相似文献   

7.
These experiments examined the effects of hypophysectomy on retention of avoidance training. In addition, the experiments examined the effects, on retention, of post-training ACTH injections administered to hypophysectomized rats. Rats were trained in a visual discriminated avoidance Y maze. Each rat received six training trials followed by six retraining trials the next day. Retention was measured by the number of correct choices during the retraining trials. When trained with a low-footshock intensity (0.8 mA), hypophysectomized rats showed retention performance which was significantly poorer than that of intact animals. There was no significant difference in performance when the animals were trained with a higher footshock intensity (1.4 mA), in part because of poorer retention performance of intact animals under these training conditions. Under both footshock conditions, a single post-training injection of ACTH enhanced later retention performance of hypophysectomized rats. This effect on memory was timedependent; injections delayed 2 or 6 hr after training did not significantly enhance retention. These findings are consistent with the view that hormonal responses to training may modulate later retention of the training experience.  相似文献   

8.
Storage of emotionally influenced memory is regulated by activation of glucocorticoid receptors (GRs) as well as of gastrin-releasing peptide receptors (GRPRs) in the dorsal hippocampus. In the present study, male Wistar rats were given a bilateral infusion of saline or the GRPR antagonist (D-Tpi6, Leu13 psi[CH2NH]-Leu14) bombesin (6-14) (RC-3095) (1.0 microg/side) into the dorsal hippocampus 10 min before training on an inhibitory avoidance task, followed by an immediate post-training i.p. injection of vehicle or the GR agonist dexamethasone (0.3 mg/kg). A retention test trial, carried out 24 h after training, indicated that intrahippocampal infusion of RC-3095 impaired inhibitory avoidance retention. Post-training administration of dexamethasone induced an enhancement of retention regardless of whether the animals had received saline or RC-3095 into the hippocampus before training. The findings indicate that hippocampal GRPR blockade does not prevent memory enhancement induced by dexamethasone. Together with previous results, these findings suggest that endogenous activation of GRPRs in the hippocampus modulates the consolidation of emotional memory, but is not a critical receptor system mediating memory formation.  相似文献   

9.
Abstract— Injections of dexamethasone (0.1 mg/kg/day, s.c.) on the first 2–3 days of life increased the phenylethanolamine- N -methyltransferase (PNMT) activity and epinephrine content of the superior cervical ganglion (SCG) and stellate ganglion of neonatal rats; the dopamine content was unaltered while norepinephrine was slightly reduced in these ganglia. Dexamethasone did not alter the PNMT activity or epinephrine content of the salivary glands or heart. The PNMT activity and epinephrine content of the SCG remained elevated for 10–14 days. Pretreatment with 6-hydroxydopamine did not alter the dexamethasone effects.
Injections of adrenocorticotrophic hormone (ACTH) (25 munits/rat twice a day) or exposure to a cold stress (4°C, 3 times a day) on the first 2–3 days of life, elevated the plasma concentration of corticosterone, and also increased the PNMT activity and epinephrine content in SCG of neonatal rats. Injecting pregnant rats with dexamethasone or ACTH, or exposing them to cold or restraint stress on the last 3 days of gestation increased the PNMT activity and epinephrine content in the SCG of their pups. These results indicate that the actions of dexamethasone on neonatal sympathetic ganglia may be mimicked by increasing the plasma concentration of endogenous adrenocortical steroids.  相似文献   

10.
Chronic administration of ouabain (3 mg/Kg body weight, subcutaneously, once daily for consecutive 15 days) definitely inhibited epinephrine-induced increase of adrenal corticosterone secretion. The inhibition rate increased along with frequency of ouabain administration. Increase in adrenal corticosterone synthesis and secretion by ACTH (20-50 mU/rat) administration was partially suppressed by pretreatment with chronic ouabain administration. A slight but significant increase of adrenal corticosterone secretion caused by epinephrine administration in hypophysectomized rats was also inhibited by pretreatment with ouabain administration. Chronic administration of neither phentolamine (1 mg/rat, intraperitoneally, once daily for consecutive 15 days) nor propranolol (3 mg/Kg body weight, subcutaneously, once daily for consecutive 15 days) caused significant changes in adrenal corticosterone secretion in response to ACTH as well as to epinephrine. Chronic administration of ouabain in rats causes not only elevated secretion of ACTH from anterior pituitary but also functional change in adrenals leading to suppression of corticosterone secretion in response to ACTH or epinephrine administration.  相似文献   

11.
Kent P  Bédard T  Khan S  Anisman H  Merali Z 《Peptides》2001,22(1):57-65
Central administration of bombesin (BN) (into the ventricular system) increased circulating levels of ACTH, corticosterone, epinephrine, norepinephrine and glucose, indicating that this peptide activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system. We then assessed the potential contribution of corticotropin-releasing hormone (CRH) system, in the mediation of these BN effects. Blockade of CRH receptors with alphah-CRF (10 microg) attenuated or blocked the BN-induced rise in plasma ACTH, epinephrine, norepinephrine, glucose and corticosterone levels. These findings support the notion that BN-induced HPA axis and sympathetic activation are mediated, at least in part, via activation of CRH neurons.  相似文献   

12.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

13.
The influence of ACTH (200 micrograms/kg), corticosterone (20 mg/kg) and cortexolone (20 mg/kg) on the anxiolytic activity of diazepam was studied. ACTH partly and corticosterone completely blocked the action of diazepam. Cortexolone injection 30 min before the administration of diazepam induced a 100% anxiolytic effect of diazepam in the range of doses from 0.1 to 0.3 mg/kg (ED50 of anxiolytic diazepam effect is 0.2 mg/kg). The role of stress hormones in the regulation of psychotropic drug activity is discussed.  相似文献   

14.
The role of brain serotonin (5HT) on the hypothalamus-pituitary-adrenal system (HPAs) under basal condition and after injections of p-chlorophenylalanine (pCPA) and L-5-hydroxytryptophan (L-5HTP) has been studied in 6, 12 and 28 month old male Wistar rats. Four experimental groups were made for each age: control, saline, injected with pCPA (250 mg/kg i.p.) and L-5HTP (200 mg/kg i.p.), the effects being valued 2 hours after L-5HTP administration and 24 hours after pCPA injection. In all groups the plasmatic ACTH, the corticosterone levels as well as the simultaneous changes of the 5TH content tryptophan hydroxylase activity in whole brain were estimated two hours after the L-5HTP injection and 24 hours after that of pCPA. Significant changes are not found in the plasmatic ACTH and corticosterone values with respect to age under basal condition. Nevertheless, the response of HPAs differs with the age after pCPA or L-5HTP injection. The ACTH and corticosterone levels augment by L-5HTP and decrease by pCPA in all age groups, but this corresponding increase or decrease was less marked in the older rats. The 5HT content as tryptophan hydroxylase activity in brain decreased in old animals. pCPA and L-5HTP determine, respectively, high falls and rise of 5TH values, these changes being more intense for pCPA in old rats and for L-5HTP in young and mature animals. The tryptophan hydroxylase activity is decreased by pCPA as L-5HTP injections.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

16.
The effect of acute (1 day) or subchronic (25 days) treatment with delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marihuana, on plasma norepinephrine (NE), epinephrine (E), corticosterone, beta-endorphin (beta-end), and splenic natural killer (NK) cell activity of the rat was studied. Groups of animals received subcutaneously, either THC in corn oil + saline (3 mg THC/kg); oil + saline; or THC + naloxone (2 mg naloxone/kg and 3 mg THC/kg). Acute injection of THC with or without naloxone did not significantly change plasma levels of NE, E corticosterone, beta-end, or the NK cell activity. However, subchronic treatment with THC significantly reduced plasma levels of NE, E, corticosterone, and NK cell activity, compared to controls. The plasma beta-end levels were significantly elevated in the THC-treated animals. In the THC + naloxone group of animals, the plasma hormone levels (corticosterone and beta-end) were similar to control levels and the NK cell activity was significantly higher than in THC-treated animals. These results indicate that subchronic exposure to THC results in suppression of splenic NK cell activity. The interaction of THC with the endogenous opiate system appears to be a contributing factor leading to the NK cell suppression in rats. A direct suppressive action of THC or its metabolites on the NK cell is not ruled out by this study.  相似文献   

17.
The bed nucleus of the stria terminalis (BNST) is interconnected with the amygdala that is implicated in memory modulation. In view of the innervation of this structure by the hippocampus and brain stem noradrenergic nuclei, this study examined the role of BNST noradrenergic activity in acquisition, formation and expression of spatial memory. Male Wistar rats with indwelling cannulae in the BNST were trained on a spatial navigation task in the Morris water maze. Groups of rats received intra-BNST infusion of vehicle, norepinephrine, prazosin or both drugs shortly before or after each daily training session, or shortly before retention tests. Results showed that pre- or posttraining infusion of 1.0 microg prazosin impaired acquisition and retention, but the treatment had no effect on a cued response task. Posttraining infusion of 1.0 microg norepinephrine enhanced acquisition and retention, and this enhancing effect was blocked by simultaneous infusion of 0.3 microg prazosin. Pretest intra-BNST of prazosin or norepinephrine at a dose of 1.0 microg did not impair expression of the spatial navigation memory. These findings suggest that the BNST noradrengergic function is involved in modulating acquisition and formation of spatial memory that engage the hippocampus.  相似文献   

18.
Nicotine is a potent stimulus for the hypothalamic-pituitary-adrenal (HPA) axis. Systemic nicotine acts via central mechanisms to stimulate by multiple pathways the release of ACTH from the anterior pituitary corticotrops and corticosterone from the adrenal cortex. Nicotine may stimulate indirectly the hypothalamic paraventricular nucleus, the site of the corticotropin-releasing hormone (CRH) neurons which activates ACTH release. In the present studies an involvement of adrenergic system and prostaglandins synthesized by constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2) in the nicotine-induced HPA response in rats was investigated. Nicotine (2.5-5 mg/kg i.p.) significantly increased plasma ACTH and corticosterone levels measured 1 hr after administration. Adrenergic receptor antagonists or COX inhibitors were injected i.p. 15 min prior to nicotine and the rats were decapitated 1 hr after the last injection. Prazosin (0.01-0.1 mg/kg), an alpha1-adrenergic antagonist, significantly decreased the nicotine-evoked ACTH and corticosterone secretion. Yohimbine (0.1-1.0 mg/kg), an alpha2-adrenergic antagonist, moderately diminished ACTH response, and propranolol (0.1-10 mg/kg), a beta-adrenergic antagonist, did not significantly alter the nicotine-induced hormones secretion. Pretreatment with piroxicam (0.2-2.0 mg/kg), a COX-1 inhibitor, considerably impaired the nicotine-induced ACTH and corticosterone secretion. Compound NS-398 (0.2-5.0 mg/kg), a selective COX-2 blocker did not markedly alter these hormones secretion, and indomethacin (2 mg/kg), a non-selective COX inhibitor significantly diminished ACTH response. These results indicate that systemic nicotine stimulates the HPA axis indirectly, and both adrenergic system and prostaglandins are significantly involved in this stimulation. Noradrenaline, stimulating postsynaptic alpha1-adrenergic receptors, and prostaglandins, synthesized by COX-1 isoenzyme, are of crucial significance in the nicotine-induced ACTH and corticosterone secretion.  相似文献   

19.
An elevated eight-arm radial maze was employed to study the effects of neuropeptide administration on the spatial learning abilities of food-deprived rats. Following 18 days of reinforced training, each animal was briefly exposed to the maze with no food available in any of the eight food-cups. Immediately after this preliminary trial, animals were injected with a single subcutaneous dose of either saline, arginine vasopressin (AVP: 1.0 or 5.0 micrograms/kg), or an AVP analog with only weak endocrinological activity, des-gly-arginine vasopressin (DG-AVP: 1.0, 5.0 or 10.0 micrograms/kg). Additional extinction trials were conducted at 2, 4, 6 and 8 h post-injection. These tests consisted of individually placing an animal on the empty maze and recording the number of arms chosen in a 5-min period. In this situation, animals learn that food is no longer present in the maze and, consequently, extinguish responding. Vasopressin potentiated this radial maze extinction behavior while DG-AVP produced behavioral results directionally opposite to those predicted by a memory facilitation hypothesis. In a subsequent experiment, vasopressin had no effects on unconditioned locomotor activity measured 2 and 4 h post-injection. These results suggest that: vasopressin improved the learning that occurred during extinction of conditioned appetitive behaviors, these vasopressin effects on conditioned behavior were independent of any unconditioned, sedative or non-specific actions of the peptide, and peripheral endocrinological responses may be necessary to demonstrate memory-enhancing effects following peripherally administered AVP.  相似文献   

20.
ACTH-release by primary cultures of rat anterior pituitary cells in response to CRF, vasopressin, epinephrine, norepinephrine and VIP is readily suppressible by dexamethasone. Rat hypothalamic extract-induced ACTH release is less sensitive to the inhibitory effect of dexamethasone than that elicited by CRF and the other secretagogues mentioned above. In studying the additive and potentiating effect on ACTH release of CRF in combination with vasopressin, VIP and the catecholamines it became evident that only the combination of micromolar concentrations of epinephrine or norepinephrine together with nanomolar concentrations of CRF will make ACTH release significantly less sensitive to the suppressive effect of dexamethasone. Other combinations of CRF and vasopressin or CRF and VIP will render ACTH release as suppressible to dexamethasone, as that elicited by each of these compounds by itself. This observation in the rat might explain at least in part the observation that a diminished suppressibility of the pituitary-adrenal axis to dexamethasone can be found in patients with psychiatric disease, especially depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号