首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of heating time and antioxidants on the heterocyclic amine (HAs) formation in marinated foods were studied. Food samples were cooked at 98 +/- 2 degrees C for 1, 2, 4, 8, 16 and 32 h in a closed pan in the presence of water, soy sauce and rock candy with or without antioxidants. The various HAs in marinated food samples and juice were analyzed by HPLC with photodiode-array detection. Results showed that the amount of HAs formed during heating followed an increased order for each increasing heating time. A larger variety and higher amount of HAs were generated in marinated pork when compared to marinated eggs and bean cake. In marinated juice, the levels of HAs were present in greater amount than in marinated foods. The incorporation of antioxidants Vitamin C, Vitamin E and BHT were found to be effective towards HAs inhibition, however, the effect was minor.  相似文献   

2.
Growth kinetics of Lactobacillus acidophilus under ohmic heating   总被引:1,自引:0,他引:1  
Lactobacillus acidophilus OSU133 was inoculated into MRS broth in a fermenter vessel and incubated at 30, 35, or 45 degrees C with agitation. Incubation temperatures were attained by conventional or ohmic heating. An electrical current at low (15 V) or high (40 V) voltage was used to heat the culture directly during fermentations under ohmic heating. The growth parameters (lag period, minimum generation time, and maximum growth) and changes in pH were determined during fermentation. Metabolic activities (consumption of glucose and production of lactic acid and bacteriocin) were determined during fermentation at 35 degrees C under both heating methods. Lag period for L. acidophilus was affected appreciably by the method of heating, but the magnitude of these changes depended on the fermentation temperature. When fermentation was done at 30 degrees C, lag period decreased by 94% under low-voltage ohmic, compared with conventional, heating methods. Ohmic heating did not change the generation time significantly and caused slight, but significant (p < 0.01) decrease in maximum growth. Therefore, the electric current enhances the early stages, but it inhibits the late stages of growth. Ohmic, compared with conventional, heating resulted in higher final pH and lower bacteriocin activity in the fermented medium. However, ohmic heating at 35 degrees C had minimal effect on glucose utilization and lactic acid production by L. acidophilus. Results show that measurement of the electric current when ohmic heating is done at a constant voltage may be used in monitoring such fermentations. In conclusion, ohmic heating is potentially useful in certain applications related to fermented foods. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Previous models based on the Michaelis-Menten kinetic equation, that glucose was not used as an acceptor, did not explain our experimental data for lactose conversion by a recombinant beta-galactosidase from Kluyeromyces lactis. In order to create a new kinetic model based on the data, the effects of galactose and glucose on beta-galactosidase activity were investigated. Galactose acted as an inhibitor at low concentrations of galactose and lactose, but did not inhibit the activity of beta-galactosidase at high concentrations of galactose (above 50mM) and lactose (above 100mM). The addition of glucose at concentrations below 50mM resulted in an increased reaction rate. A new model of K. lactis beta-galactosidase for both hydrolysis and transgalactosylation reactions with glucose and lactose as acceptors was proposed. The proposed model was fitted well to the experimental data of the time-course reactions for lactose conversion by K. lactis beta-galactosidase at various concentrations of substrate.  相似文献   

4.
Hydrolytic reactions of oligopeptide 4-nitroanilides catalyzed by human-alpha-thrombin, human activated protein C and human factor Xa were studied at pH 8.0-8.4 and 25.0+/-0.1 degrees C by the progress curve method and individual rate constants were calculated mostly within 10% internal error using DYNAFITV. A systematic strategy has been developed for fitting a three-step consecutive mechanism to eighteen hundred to six thousand time-course data points polled from two to four independent kinetic experiments. Enzyme and substrate concentrations were also calculated. Individual rate constants well reproduce published values obtained under comparable conditions and the Michaelis-Menten kinetic parameters calculated from these elementary rate constants are also within reasonable limits of published values. For comparison, the integrated Michaelis-Menten equation was also fitted to data from twelve sets. Both the k(cat) and k(cat)/K(m) values are within 15% agreement with those calculated using the elementary rate constants obtained with DYNAFITV. Rate constants for the second and third consecutive steps are within 3-4 fold indicating that both determine the overall rate. The Factor Xa-catalyzed hydrolysis of N-alpha-Z-D-Arg-Gly-Arg-pNA.2HCl at pH 8.4 in a series of buffers containing increasing fractions of deuterium at 25.0+/-0.1 degrees C shows a very strong dependence of k(3) and a moderate dependence of k(2) on D content in the buffer: the fractionation factors are: 0.49+/-0.03 for K(1,) 0.70+/-0.05 for k(2), and (0.32+/-0.03)(2) for k(3).  相似文献   

5.
The purpose of this study was to determine the systemic hemodynamic mechanism(s) underlying the pressor response to nonexertional heat stress in the unrestrained conscious rat. After a 60-min control period [ambient temperature (Ta) 24 degrees C], male Sprague-Dawley rats (260-340 g) were exposed to a Ta of 42 degrees C until a colonic temperature (Tc) of 41 degrees C was attained. As Tc rose from control levels (38.1 +/- 0.1 degrees C) to 41 degrees C, mean arterial blood pressure (carotid artery catheter, n = 33) increased from 124 +/- 2 to 151 +/- 2 mmHg (P less than 0.05). During this period, heart rate increased (395 +/- 5 to 430 +/- 6 beats/min, P less than 0.05) and stroke volume remained unchanged. As a result, ascending aorta blood flow velocity (Doppler flow probe, n = 8), used as an index of cardiac output, did not change from control levels during heating, but there was a progressive Tc-dependent increase in systemic vascular resistance (+30% at end heating, P less than 0.05). This systemic vasoconstrictor response was associated with decreases in blood flow (-31 +/- 9 and -21 +/- 5%) and increases in vascular resistance (94 +/- 16 and 53 +/- 8%; all P less than 0.05) in the superior mesenteric and renal arteries (n = 8 each) and increases in plasma norepinephrine (303 +/- 37 to 1,237 +/- 262 pg/ml) and epinephrine (148 +/- 28 to 708 +/- 145 pg/ml) concentrations (n = 12, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Arterialization of venous blood is often used in studying forearm metabolism. Astrup et al. [Am. J. Physiol. 255 (Endocrinol. Metab. 18): E572-E578, 1988] showed that heating of the hand by a warming blanket caused a redistribution of blood flow in the contralateral arm and thus introduced errors in forearm skeletal muscle flux calculations. The present study was undertaken to investigate how hand heating by a warm air box (60 degrees C) would affect metabolism and blood flow in the contralateral arm before and during 3 h after a glucose load. Eleven healthy volunteers (5 males, 6 females) underwent an oral glucose tolerance test (70 g) on two different occasions, one test with and one without heating of the contralateral hand, in random order. Heating the hand for 30 min before glucose intake did not affect skin temperature, rectal temperature, deep venous oxygen saturation, forearm blood flow, or oxygen consumption of forearm skeletal muscle. Although, after the glucose load, heating significantly increased forearm blood flow (P less than 0.05), the integrated response after glucose was not significantly different between control and heating experiments [67 +/- 43 and 117 +/- 41 (SE) ml/100 ml tissue]. With both conditions, there was an increase in skin temperature (P less than 0.001, integrated response control: 369 +/- 79 and heating: 416 +/- 203 degrees C) and oxygen consumption of forearm muscle (control: 290 +/- 73, P less than 0.05 and heating: 390 +/- 130 mumol/100 ml, P less than 0.05) after glucose intake. These responses did not significantly differ between the conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Li Z  Zhao W  Meng B  Liu C  Zhu Q  Zhao G 《Bioresource technology》2008,99(16):7616-7622
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.  相似文献   

8.
1) The biological cofactor and carrier activities of dolichyl phosphates of low isoprene multiplicity (n) and defined geometry, (synthesized according to L. Jaenicke and H.-U. Siegmund, Chem. Phys. Lipids 51 (1989) 159-170), were assayed in different transfer reactions of the microsomal dolichyl-phosphate cycle against natural pig liver dolichyl phosphate (n = 18 to 20). 2) The apparent Michaelis constants and maximal velocities were determined from initial reaction rates for the transfer from GDP-mannose, UDP-N-acetylglucosamine, and UDP-glucose to the synthetic truncated dolichyl phosphates. They afford quantitative comparison and show increasing biological activities from dolichyl-6 phosphate to dolichyl-11 phosphate, which is about as active as the natural mixture. This is in accord with previous findings on the starting reactions of the cycle. 3) Truncated dolichyl diphosphochitobioses, biosynthesized in vitro from synthetic dolichyl phosphates, were used as acceptors for nucleoside diphosphohexoses in solubilized membranes. All of them show about the same activity. The kinetics and yield were determined for each of the transfers. Activity is increased by adding UDP-glucose. The inactive very short-chain dolichol compounds do not interfere with the transfer to active longer chain dolichols. 4) The oligosaccharides produced by transfer of mannose and glucose to truncated dolichyl diphosphate-bound chitobiose were isolated and analysed for sugar multiplicity. The heptasaccharide and the un-decasaccharide are accumulated most, pointing to the transport across the endoplasmic membranes (ER) as the rate limiting reaction. 5) The truncated dolichyl-diphosphate-bound oligosaccharides are transferred to protein(s) by the crude, solubilized microsomal preparation independent of chain length of the cofactor/carrier, yet with increasing yield as shown by enzyme immunoblot analysis.  相似文献   

9.
In Saccharomyces cerevisiae, the histidine-containing phosphotransfer (HPt) protein YPD1 transfers phosphoryl groups between the three different response regulator domains of SLN1, SSK1, and SKN7 (designated R1, R2, and R3, respectively). Together these proteins form a branched histidine-aspartic acid phosphorelay system through which cells can respond to hyperosmotic and other environmental stresses. The in vivo order of phosphotransfer reactions is believed to proceed from SLN1-R1 to YPD1 and then subsequently to SSK1-R2 or SKN7-R3. The individual phosphoryl transfer reactions between YPD1 and the response regulator domains have been examined kinetically. A maximum forward rate constant of 29 s(-)(1) was determined for the reaction between SLN1-R1 approximately P and YPD1 with a K(d) of 1.4 microM for the SLN1-R1 approximately P.YPD1 complex. In the subsequent reactions, phosphotransfer from YPD1 to SSK1-R2 is very rapid (160 s(-)(1)) and is strongly favored over phosphotransfer to SKN7-R3. Phosphotransfer reactions between YPD1 and SLN1-R1 or SKN7-R3 were reversible. In contrast, no reverse transfer from SSK1-R2 approximately P to YPD1 was observed. These findings are consistent with the notion that SSK1 is constitutively phosphorylated under normal osmotic conditions. In addition, we have examined the roles of several conserved amino acid residues surrounding the phosphorylatable histidine (H64) of YPD1 using phosphoryl transfer reactions involving YPD1 mutants. With respect to phosphoryl transfer from SLN1-R1 approximately P, only one YPD1 mutant (K67A) exhibited an increase in K(d) and thus affects binding of YPD1 to SLN1-R1 approximately P, whereas other mutants (R90A, Q86A, and G68Q) showed a decrease in phosphoryl transfer rate. Only the G68Q-YPD1 mutant was significantly affected in phosphotransfer to SSK1-R2 ( approximately 680-fold decrease in rate in comparison to wild-type). This is the first report of a kinetic analysis of a eukaryotic "two-component" histidine-aspartic acid phosphotransfer system, enabling a comparison of the transfer rates and binding constants to the few bacterial systems that have been studied this way.  相似文献   

10.
When cell-saturating amounts of glucose and phosphate were added to steady state cultures of Klebsiella aerogenes that were, respectively, glucose- and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must possess effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved. Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and therefore expressed a higher YO value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of "maintenance" and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment. The maintenance rates of oxygen consumption of K. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source. The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures of K. aerogenes is discussed.  相似文献   

11.
Molecular and cellular mechanisms of the interrelations between the feeding and defense behaviour were studied in a snail Helix lucorum. The dynamics of defense reactions was investigated in snails with different levels of feeding motivation. Defense reactions were suppressed in hungry snails, while 15-20 min after the beginning of food intake they were facilitated. The facilitation depended on a duration of starvation. Injection of 0.5 ml of 5 mM glucose solution (up to the glucose level in the haemolymph of a food satiated snail, 1.6-2.0 mM) or injections of 20-30 ng of synthetic analogues of the gastrointestinal peptides (pentagastrin of octapeptide cholecystokinin, CCK-8) facilitated the defense reaction in a hungry snail. Parameters of the facilitation were similar to those in the period of food intake. Activity of the command neurons of defense behaviour (L-PPL1) after the carrot juice application to the lip of a semi-intact preparation from a hungry snail was glucose-dependent. Similar glucose-dependent changes of L-PPL1 activity were found after CCK-8, but not FMRFamide application during the perfusion with 0.5 mM glucose. L-PPL1, but not L-PPa2-3 neurons were most sensitive to glucose and CCK-8 level changes in the Ringer solution. Adaptive significance of the behavioural phenomena as well as glucose and gastrin/CCK-like peptide participation in these processes are discussed.  相似文献   

12.
The mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF(2)OCHF(2) (HFE-134) and OH radical are investigated using the high level ab initio G2(MP2) and hybrid density functional model MPWB1K quantum chemical methods. Two relatively close in energy conformers are found for CHF(2)OCHF(2) molecule; both of them are likely to be important in the temperature range (250-1000?K) of our study. The hydrogen abstraction pathway for both the conformers with OH radical is studied and the rate constants are determined for the first time in a wide temperature range of 250 - 1000?K. The G2(MP2) calculated total rate constant value of 2.9?×?10(-15)?cm(3)?molecule(-1)?s(-1) at 298?K is found to be in very good agreement with the reported experimental value of 2.4?×?10(-15)?cm(3)?molecule(-1)?s(-1) at 298?K. The heats of reaction for CHF(2)OCHF(2)?+?OH reaction is computed to be -13.2?kcal?mol(-1). The atmospheric lifetime of CHF(2)OCHF(2) is expected to be around 12?years.  相似文献   

13.
Laboratory studies and a single field study have shown that heart rate in some reptiles is faster during heating than during cooling at any given body temperature. This phenomenon, which has been shown to reflect changes in peripheral blood flow, is shown here to occur in the lizard Varanus varius (lace monitor) in the wild. On a typical clear day, lizards emerged from their shelters in the morning to warm in the sun. Following this, animals were active, moving until they again entered a shelter in the evening. During their period of activity, body temperature was 34-36 degrees C in all six study animals (4.0-5.6 kg), but the animals rarely shuttled between sun and shade exposure. Heart rate during the morning heating period was significantly faster than during the evening cooling period. However, the ratio of heating to cooling heart rate decreased with increasing body temperature, being close to 2 at body temperatures of 22-24 degrees C and decreasing to 1.2-1.3 at body temperatures of 34-36 degrees C. There was a significant decrease in thermal time constants with increasing heart rate during heating and cooling confirming that changes in heart rate are linked to rates of heat exchange.  相似文献   

14.
The effects of the homogeneous catalysts (H(2)SO(4) and NaOH) and heterogeneous catalysts (TiO(2) and ZrO(2)) on glucose reactions were examined in hot compressed water (473 K) by a batch-type reactor. From the homogeneous catalyst studies, we confirmed that the acid catalyst promoted dehydration, while isomerization of glucose to fructose was catalyzed by alkali. Anatase TiO(2) was found to act as an acid catalyst to promote formation of 5-hydroxymethylfuraldehyde (HMF). Zirconia (ZrO(2)) was a base catalyst to promote the isomerization of glucose. The effects of the additives were also confirmed through fructose reactions.  相似文献   

15.
Thermodynamics of isomerization reactions involving sugar phosphates have been studied using heat-conduction microcalorimetry. For the process glucose 6-phosphate2-(aqueous) = fructose 6-phosphate2- (aqueous), K = 0.285 +/- 0.004, delta Go = 3.11 +/- 0.04 kJ.mol-1, delta Ho = 11.7 +/- 0.2 kJ.mol-1, and delta Cop = 44 +/- 11 J.mol-1.K-1 at 298.15 K. For the process mannose 6-phosphate2- (aqueous) = fructose 6-phosphate2- (aqueous), K = 0.99 +/- 0.05, delta Go = 0.025 +/- 0.13 kJ.mol-1, delta Ho = 8.46 +/- 0.2 kJ.mol-1, and delta Cop = 38 +/- 25 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. An approximate result (-14 +/- 5 kJ.mol-1) was obtained for the enthalpy of isomerization of ribulose 5-phosphate (aqueous) to ribose 5-phosphate (aqueous). The data from the literature on isomerization reactions involving sugar phosphates have been summarized, adjusted to a common reference state, and examined for trends and relationships to each other and to other thermodynamic measurements. Estimates are made for thermochemical parameters to predict the state of equilibrium of the several isomerizations considered herein.  相似文献   

16.
Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pseudo-steady-state ATP balance. Significant fold changes in metabolites (10-1/10) and fluxes (4-1/4) were observed during the short (200 s) period of glucose excess. During glucose excess there was no secretion of by-products and the increased glucose uptake rate led within 40s to a 3.7 fold increase in growth rate. Also within 40-60s a new pseudo-steady-state was reached for both metabolite levels and fluxes. Flux changes of reactions were strongly correlated to the concentrations of involved compounds. Surprisingly the 3.7 fold increase in growth rate and hence protein synthesis rate was not matched by a significant increase in amino acid concentrations. This poses interesting questions for the kinetic factors, which drive protein synthesis by ribosomes.  相似文献   

17.
Kim JS  Lee YS 《Amino acids》2009,36(3):465-474
This study investigated the enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. The study measured reducing sugars and L- and D- amino acids using HPLC as an index for the amount of enolization of the sugars and isomerization of the amino acids. Additionally, the absorption of melanoidins was measured at different wavelengths (420, 450, 470, 490 nm); the UV–Vis spectra and the extinction coefficient were determined for the formation of melanoidins. Melanoidins were, rather arbitrarily, defined by a high-molecular-weight (HMW) if it was above a lower limit of 12.4 kDa, which was the nominal cut-off value in the dialysis system used. A remarkable enolization reaction of the sugars was observed in the course of the Maillard reaction. Especially, in the Fru/D-Asn model system, the degree of sugar enolization was more than in the other model systems. All of the FDAA (1-fluoro-2, 4-dinitrophenyl-5-L-alanine amide) amino acids were separated by TLC. The racemization of the amino acids was higher in the fructose-amino acids systems. Isomer formation was the highest in the Fru/D-Asn system. The L- and D- isomers showed different absorptions in the UV–Vis spectra, although these had similar shapes. The absorption of the melanoidins formed from glucose was higher than that formed from fructose. In particular, the sugar–asparagine system showed different characteristics according to the L- and D-isomers. The differences in the extinction coefficients of the melanoidins was significant (P < 0.05), except for the sugar–lysine system.  相似文献   

18.
19.
Repeated heating and cooling in lethal (2-52 degrees C) and nonlethal (2-37 degrees C) temperature ranges resulted in cell death of Escherichia coli B/r and E. coli B(S-1) suspended in 0.01 M phosphate buffer, pH 7.0 at varying osmotic pressure, but not in cow's milk. The lethal effect increased with the rate of heating and with increasing suspension media tonicity; it may be caused by the temperature destabilization of cellular osmotic homeostasis.  相似文献   

20.
Summary The effect of heating on the properties of Apomu (Psammentic Usthorthent), Egbeda (Oxic Paleustalf) and Gambari (Typic Plinthustalf) surface soils were studied under laboratory conditions. Heating at low temperatures (100°C) have no detrimental effects on soil properties, on the contrary it increased the soil extractable P, Mg, Fe, Mn and Zn levels. Pronounced reductions in total N, Org. C, Org. P and extractable Ca and Mg levels and marked increases in extractable P, Zn, Mn and Fe were observed by heating to 200°C. Heating to 500° had an adverse effect on soil chemical and physical properties.Plant height and dry matter yeild of rice plants were higher when grown on Egbeda soil previously heated to 100°C. With addition of N, P and K there was no observed beneficial effect of the heating treatment. Rice plants grown on Egbeda soil previously heated to 200°C showed high uptake of Mn. Plants grew badly in soil previously heated to 500°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号