首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Crosslinking of hnRNP proteins to pre-mRNA requires U1 and U2 snRNPs.   总被引:24,自引:6,他引:18       下载免费PDF全文
Proteins interacting with pre-mRNAs during early stages of spliceosome formation in a HeLa nuclear extract were investigated by photochemical RNA-protein crosslinking. The level of protein crosslinking to a beta-globin pre-mRNA was positively correlated with the presence of an intron. Proteins of 110,000, 59,000 and 39,000 mol. wt. were crosslinked to the beta-globin pre-mRNA, the latter of which was identified as the A1 hnRNP protein. Comparable experiments with an adenovirus pre-mRNA revealed crosslinked proteins of 110,000, 56,000 and 45,000 mol. wt., with the latter identified as belonging to the C group hnRNP proteins. Crosslinking of hnRNP proteins to both the beta-globin and adenovirus pre-mRNAs was eliminated by oligodeoxynucleotide-directed RNase H excision of an internal region (nt 28-42) of U2 RNA, but was not affected by oligo/RNase H cleavage of the 5'-terminal 15 nucleotides of U2 RNA. Cleavage of the 5'-terminal 15 nucleotides of U1 RNA preferentially eliminated crosslinking of the hnRNP A1 protein to both pre-mRNAs. The requirement of intact U1 snRNP for A1 protein crosslinking was further demonstrated by the fact that although micrococcal nuclease-treated extracts did not support crosslinking of A1 hnRNP protein to beta-globin pre-mRNA, crosslinking was restored by addition of a U1 snRNP-enriched fraction.  相似文献   

2.
Histone RNA 3' end formation occurs through a specific cleavage reaction that requires, among other things, base-pairing interactions between a conserved spacer element in the pre-mRNA and the minor U7 snRNA present as U7 snRNP. An oligonucleotide complementary to the first 16 nucleotides of U7 RNA can be used to characterize U7 snRNPs from nuclear extracts by native gel electrophoresis. Using similar native gel techniques, we present direct biochemical evidence for a stable association between histone pre-mRNA and U7 snRNPs. Other complexes formed in the nuclear extract are dependent on the 5' cap structure and on the conserved hairpin element of histone pre-mRNA, respectively. However, in contrast to the U7-specific complex, their formation is not required for processing. Comparison of several authentic and mutant histone pre-mRNAs with different spacer sequences demonstrates that the formation and stability of the U7-specific complex closely follows the predicted stability of the potential RNA-RNA hybrid. However, this does not exclude a stabilization of the complex by U7 snRNP structural proteins.  相似文献   

3.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

4.
D L Black  J A Steitz 《Cell》1986,46(5):697-704
Selective cleavage of U4 or U6 RNA in a HeLa cell nuclear extract inhibits splicing of pre-mRNAs containing an adenovirus or a simian virus 40 intron. RNAs in the U4/U6 small nuclear ribonucleoprotein (snRNP) were specifically degraded with RNAase H and deoxyoligonucleotides. Two oligomers complementary to U4 RNA and two complementary to U6 RNA cleave their target RNAs and inhibit the appearance of both spliced products and reaction intermediates. Splicing is reconstituted by mixing an extract containing cleaved U4 or U6 RNA with one in which splicing has been inhibited by degrading U2 RNA. All four abundant snRNPs, containing U1, U2, U5, or U4 and U6 RNAs, are now implicated in pre-mRNA splicing. Possible interactions of the U4/U6 snRNP with other components of the splicing complex are discussed.  相似文献   

5.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

6.
U2 small nuclear RNP assembly in vitro.   总被引:8,自引:1,他引:7       下载免费PDF全文
  相似文献   

7.
The in vitro splicing of pre-mRNA of the human beta-globin gene in the presence of HeLa cell nuclear extract was investigated. Splicing was inhibited by auto-antibodies against U4 and U6 snRNP particles. No intermediates or products of the splicing reaction were evident in the presence of antibodies against U4 and U6 snRNPs which suggests their involvement in pre-mRNA splicing.  相似文献   

8.
HeLa cell nuclear splicing extracts have been prepared that are specifically and efficiently depleted of U1, U2, or U4/U6 snRNPs by antisense affinity chromatography using biotinylated 2'-OMe RNA oligonucleotides. Removal of each snRNP particle prevents pre-mRNA splicing but arrests spliceosome formation at different stages of assembly. Mixing extracts depleted for different snRNP particles restores formation of functional splicing complexes. Specific binding of factors to the 3' splice site region is still detected in snRNP-depleted extracts. Depletion of U1 snRNP impairs stable binding of U2 snRNP to the pre-mRNA branch site. This role of U1 snRNP in promoting stable preslicing complex formation is independent of the U1 snRNA-5' splice site interaction.  相似文献   

9.
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.  相似文献   

10.
RNA duplexes containing the modified base 2-amino-adenine in place of adenine are stabilized through the formation of three hydrogen bonds in 2-amino A.U base pairs. Antisense 2'-O-alkyloligoribonucleotide probes incorporating 2-aminoadenosine are thus able to efficiently affinity select RNP particles which are otherwise inaccessible. This has allowed the efficient and specific depletion of U5 snRNP from HeLa cell nuclear splicing extracts. U5 snRNP is shown to be essential for spliceosome assembly and for both steps of pre-mRNA splicing. The absence of U5 snRNP prevents the stable association of U4/U6 but not U1 and U2 snRNPs with pre-mRNA.  相似文献   

11.
12.
G Winkelmann  M Bach    R Lührmann 《The EMBO journal》1989,8(10):3105-3112
We have established an in vitro complementation system that has allowed us to investigate the role of individual purified snRNPs in the splicing of pre-mRNA molecules. For the preparation of snRNP-depleted nuclear extracts we have first removed the majority of endogenous snRNPs from the nuclear extracts by one passage over an anti-m3G column and then degraded the remaining snRNPs with micrococcal nuclease. The mixture of snRNPs U1, U2, U4/U6 and U5, obtained by anti-m3G immuno-affinity chromatography, was functionally active and able to restore the splicing of snRNP-depleted nuclear extracts. Mono-Q chromatography was used for further fractionation of the snRNPs U1-U6. This produced three fractions that were highly enriched in snRNPs U1 and U2, U5 and U4/U6 respectively. Conditions were found where addition of the [U1, U2] and the U4/U6 snRNP fractions to the snRNP-depleted nuclear extracts gave rise to the formation of splice intermediates in the absence of any 3' cleavage/exon 1-exon 2 product formation. Only when purified 20S U5 snRNPs were added did both steps of the splicing reaction occur efficiently. Our data suggest that U5 snRNP is absolutely required for the second step of splicing and is needed further for efficient initiation of the splicing reaction. The requirement for U5 snRNPs for splicing was corroborated by glycerol gradient sedimentation analysis of the respective reconstituted pre-mRNP complexes. Stable and efficient formation of 50-60S spliceosomes was observed only in the presence of all snRNPs.  相似文献   

13.
14.
We have studied the assembly, composition and structure of splicing complexes using biotin-avidin affinity chromatography and RNase protection assays. We find that U1, U2, U4, U5 and U6 snRNPs associate with the pre-mRNA and are in the mature, functional complex. Association of U1 snRNP with the pre-mRNA is rapid and ATP independent; binding of all other snRNPs occurs subsequently and is ATP dependent. Efficient binding of U1 and U2 snRNPs requires a 5' splice site or a 3' splice site/branch point region, respectively. Both sequence elements are required for efficient U4, U5 and U6 snRNP binding. Mutant RNA substrates containing only a 5' splice site or a 3' splice site/branch point region are assembled into 'partial' splicing complexes, which contain a subset of these five snRNPs. RNase protection experiments indicate that in contrast to U1 and U2 snRNPs, U4, U5 and U6 snRNPs do not contact the pre-mRNA. Based upon the time course of snRNP binding and the composition of sucrose gradient fractionated splicing complexes we suggest an assembly pathway proceeding from a 20S (U1 snRNP only) through a 40S (U1 and U2 snRNPs) to the functional 60S splicing complex (U1, U2, U4, U5 and U6 snRNPs).  相似文献   

15.
16.
To understand how the U5 small nuclear ribonucleoprotein (snRNP) interacts with other spliceosome components, its structure and binding to the U4/U6 snRNP were analyzed. The interaction of the U5 snRNP with the U4/U6 snRNP was studied by separating the snRNPs in HeLa cell nuclear extracts on glycerol gradients. A complex running at 25S and containing U4, U5, and U6 but not U1 or U2 snRNAs was identified. In contrast to results with native gel electrophoresis to separate snRNPs, this U4/U5/U6 snRNP complex requires ATP to assemble from the individual snRNPs. The structure of the U5 RNA within the U5 snRNP and the U4/5/6 snRNP complexes was then compared. Oligonucleotide-targeted RNase H digestion identified one RNA sequence in the U5 snRNP capable of base pairing to other nucleic acid sequences. Chemical modification experiments identified this sequence as well as two other U5 RNA sequences as accessible to modification within the U5 RNP. One of these regions is a large loop in the U5 RNA secondary structure whose sequence is conserved from Saccharomyces cerevisiae to humans. Interestingly, no differences in modification of free U5 snRNP as compared to U5 in the U4/U5/U6 snRNP complex were observed, suggesting that recognition of specific RNA sequences in the U5 snRNP is not required for U4/U5/U6 snRNP assembly.  相似文献   

17.
In animals, replication-dependent histone genes are expressed in dividing somatic cells during S phase to maintain chromatin condensation. Histone mRNA 3'-end formation is an essential regulatory step producing an mRNA with a hairpin structure at the 3'-end. This requires the interaction of the U7 small nuclear ribonucleoprotein particle (snRNP) with a purine-rich spacer element and of the hairpin-binding protein with the hairpin element, respectively, in the 3'-untranslated region of histone RNA. Here, we demonstrate that bona fide histone RNA 3' processing takes place in Xenopus egg extracts in a reaction dependent on the addition of synthetic U7 RNA that is assembled into a ribonucleoprotein particle by protein components available in the extract. In addition to reconstituted U7 snRNP, Xenopus hairpin-binding protein SLBP1 is necessary for efficient processing. Histone RNA 3' processing is not affected by addition of non-destructible cyclin B, which drives the egg extract into M phase, but SLBP1 is phosphorylated in this extract. SPH-1, the Xenopus homologue of human p80-coilin found in coiled bodies, is associated with U7 snRNPs. However, this does not depend on the U7 RNA being able to process histone RNA and also occurs with U1 snRNPs; therefore, association of SPH1 cannot be considered as a hallmark of a functional U7 snRNP.  相似文献   

18.
U2 snRNA, a key player in nuclear pre-mRNA splicing, contains a 5'-terminal m3G cap and many internal modifications. The latter were shown in vertebrates to be generally required for U2 function in splicing, but precisely which residues are essential and their role in snRNP and/or spliceosome assembly is presently not clear. Here, we investigated the roles of individual modified nucleotides of HeLa U2 snRNA in pre-mRNA splicing, using a two-step in vitro reconstitution/complementation assay. We show that the three pseudouridines and five 2'O-methyl groups within the first 20 nucleotides of U2 snRNA, but not the m3G cap, are required for efficient pre-mRNA splicing. Individual pseudouridines were not essential, but had cumulative effects on U2 function. In contrast, four of five 2'O-methylations (at positions 1, 2, 12, and 19) were individually required for splicing. The in vitro assembly of 17S U2 snRNPs was not dependent on the presence of modified U2 residues. However, individual internal modifications were required for the formation of the ATP-independent early spliceosomal E complex. Our data strongly suggest that modifications within the first 20 nucleotides of U2 play an important role in facilitating the interaction of U2 with U1 snRNP and/or other factors within the E complex.  相似文献   

19.
Autoantibodies directed against the U2 small nuclear ribonucleoprotein (snRNP) have been found in the serum of a patient with scleroderma-polymyositis overlap syndrome. This specificity, called anti-(U2)-RNP, is distinct from all previously described autoantibodies, including those that precipitate related snRNPs: anti-Sm antibodies, which react with the entire set of U1, U2, U4, U5, and U6 snRNPs, and anti-(U1)RNP antibodies, which recognize only U1 snRNPs. From HeLa cell extracts, anti-(U2)RNP immunoprecipitates predominantly one 32P-labeled RNA species, identified as U2 small nuclear RNA, and six [35S]methionine-labeled protein bands, A' (Mr = 32,000), B (Mr = 28,000), D (Mr = 16,000), E (Mr = 13,000), F (Mr = 12,000), and G (Mr = 11,000). Protein blot analysis reveals that the A' protein carries (U2)RNP antigenic determinant(s) and therefore represents a polypeptide unique to the U2 snRNP; the B protein associated with U2 snRNPs may also be unique. Like U1 and the other Sm snRNPs, U2 snRNPs occupy a nuclear, non-nucleolar location and are antigenically conserved from insects to man. An antibody specific for the U2 snRNP will be useful in deciphering the function of this particle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号