首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

2.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

3.
K Kerby  J Kuspira  B L Jones 《Génome》1988,30(4):576-581
To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the alpha 1 and alpha 2 forms coded for by genes in the B and D genomes, and is identical to the beta form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.  相似文献   

4.
Tetraploid wheat (AABB or AAGG, 2n = 4x = 28) holds an important place in Triticum. It includes two allopolyploid species, Triticum turgidum and Triticum timopheevii. Many problems concerning the phylogenetic relationships among tetraploid wheat species remain unresolved. In this study, sequences data for the nuclear DMC1 gene from 61 accessions of Triticum and Aegilops species, representing diploid and tetraploid species, were used to examine the phylogenetic relationships among tetraploid wheat. Phylogenetic trees were constructed using maximum-likelihood and neighbor-joining approaches, and gene flow and genetic differentiation values were computed. The results indicated that the A genome of tetraploid wheat originated from T. urartu rather than T. monococcum, and Aegilops speltoides was the donor of the B and G genomes. Hulled tetraploid wheat accessions formed a subclade, and naked tetraploid wheat got other subclade, indicating that at least two intermediary subspecies were involved in the evolution of T. turgidum. Triticum turgidum and T. timopheevii might have simultaneously originated from a hybridization events. These results indicated that the DMC1 gene sequences are useful for resolution of the molecular phylogenetic relationships of tetraploid wheat.  相似文献   

5.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

6.
甘青地区四倍体小麦染色体C—带多态性   总被引:5,自引:0,他引:5  
对来自甘肃、青海地区的5个圆锥小麦(Triticum turgidum L.)地方品种进行了染色体C-分带研究。结果表明,2AL上的强端带和3BL上的强端带为此类材料所特有的带,区别于其它地方的圆锥小麦地方品种,5个圆锥小麦地方品种-某些染色体上 定的多态性,其中黑芒白麦比其它4个品种C-带多态性较高,表明黑芒白麦与其它4个品种之间存在有较大的遗传分化。与普通小麦比较,揭示这5个品种多个染色体与普通小麦AB组染色体带型存在显著多态。  相似文献   

7.
The presence of 5S rDNA units on chromosome 1A of Triticum aestivum was shown by the development of a specific PCR test, using head-to-head oriented primers. This primer set allowed the amplification of complete 5S DNA units and was used to isolate SS-Rrna-A1 sequences from polyploid and diploid wheat species. Multiple-alignment and parsimony analyses of the 132 sequences divided the sequences into four types. The isolates from T. aestivum and the tetraploid species (T. dicoccoides, T. dicoccum, T durum, T. araraticum, and T timopheevi) were all of one type, which was shown to be closely related to the type mainly characteristic for T. urartu. The other two types were isolated exclusively from the diploid species T. monococcum, T aegilopoides, T. thaoudar, and T. sinskajae and the hexaploid species T. zhukovski. Triticum monococcum was the only species for which representatives of each of the four sequence types were found to be present. Further, we discuss the possible multicluster arrangement of the 5S-Rrna-A1 array.  相似文献   

8.
小麦染色体组的起源与进化探讨   总被引:4,自引:0,他引:4  
陈庆富   《广西植物》1997,17(3):276-282
对小麦染色体组的起源及其进化进行了全面综述后,提出了一个新的小麦进化途径,并认为:(1)Triticummonococumvarurartu是多倍体小麦A组的原初供体,在A组进入多倍体小麦后有Tmonovarboeoticum的基因渗入;(2)B和G组的原初供体是Tspeltoides的S组,在该S组进入多倍体小麦后有两个进化方向,即S组结构分化形成G组和S组经外源染色体代换及重组等而进化成B组;(3)Tturgidum和Ttimophevi都是来自Tspeltoides为母本与Tmonovarurartu杂交后并双二倍化而形成的原初四倍体小麦(SSAA),并由它分别经遗传渗入和结构分化而成;(4)Tzhukovskyi是Ttimophevi作母本与Tmonovarboeoticum杂交并双二倍化而形成,故它具有分别来自Tmonovarurartu和Tmonovarboeoticum的两类A组;(5)Taestivum的D组来自Ttauschi;(6)无论A组、B组、D组、G组在进入多倍体小麦后均有相当分化,同时在其供体种中也有一定分化。  相似文献   

9.
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.  相似文献   

10.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   

11.
To study genome evolution in wheat, we have sequenced and compared two large physical contigs of 285 and 142 kb covering orthologous low molecular weight (LMW) glutenin loci on chromosome 1AS of a diploid wheat species (Triticum monococcum subsp monococcum) and a tetraploid wheat species (Triticum turgidum subsp durum). Sequence conservation between the two species was restricted to small regions containing the orthologous LMW glutenin genes, whereas >90% of the compared sequences were not conserved. Dramatic sequence rearrangements occurred in the regions rich in repetitive elements. Dating of long terminal repeat retrotransposon insertions revealed different insertion events occurring during the last 5.5 million years in both species. These insertions are partially responsible for the lack of homology between the intergenic regions. In addition, the gene space was conserved only partially, because different predicted genes were identified on both contigs. Duplications and deletions of large fragments that might be attributable to illegitimate recombination also have contributed to the differentiation of this region in both species. The striking differences in the intergenic landscape between the A and A(m) genomes that diverged 1 to 3 million years ago provide evidence for a dynamic and rapid genome evolution in wheat species.  相似文献   

12.
Purothionins were extracted and purified from the diploid wheat Triticum monococcum. Two proteins were obtained, one of which was present in only very small amounts. The major purothionin of T. monococcum was sequenced and it had an amino acid sequence identical with that of the beta-purothionin of Triticum aestivum (hexaploid bread wheat). It is known that T. monococcum contains the wheat A genome, so the structural gene coding for the beta-purothionin must comprise a part of the A genome. There have been no observable (as amino acid replacements) changes in the DNA comprising either the beta-purothionin gene of T. aestivum or the purothionin gene of T. monococcum, since T. monococcum (or its wild equivalent, Triticum boeoticum) hybridized with the diploid wheat B genome progenitor and started the evolution from diploid to allohexaploid wheat. All of the investigated characteristics of the purothionin-like protein isolated in small amounts suggested that it was essentially identical in amino acid sequence with the T. monococcum purothionin. It may be a dimerized form of beta-purothionin.  相似文献   

13.
Chromosome pairing at metaphase I was studied in different interspecific hybrids involving Aegilops speltoides (SS) and polyploid wheats Triticum timopheevii (AtAtGG), T. turgidum (AABB), and T. aestivum (AABBDD) to study the relationships between the S, G, and B genomes. Individual chromosomes and their arms were identified by means of C-banding. Pairing between chromosomes of the G and S genomes in T. timopheevii x Ae. speltoides (AtGS) hybrids reached a frequency much higher than pairing between chromosomes of the B and S genomes in T. turgidum x Ae. speltoides (ABS) hybrids and T. aestivum x Ae. speltoides (ABDS) hybrids, and pairing between B- and G-genome chromosomes in T. turgidum x T. timopheevii (AAtBG) hybrids or T. aestivum x T. timopheevii (AAtBGD) hybrids. These results support a higher degree of closeness of the G and S genomes to each other than to the B genome. Such relationships are consistent with independent origins of tetraploid wheats T. turgidum and T. timopheevii and with a more recent formation of the timopheevi lineage.  相似文献   

14.
L Yan  M Bhave 《Génome》2001,44(4):582-588
The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.  相似文献   

15.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

16.
In wheat, race-specific resistance to the fungal pathogen powdery mildew (Blumeria graminis f. sp. tritici) is controlled by the Pm genes. There are 10 alleles conferring resistance at the Pm3 locus (Pm3a to Pm3j) on chromosome 1AS of hexaploid bread wheat (Triticum aestivum L.). The genome of hexaploid wheat has a size of 1.6 x 1010 bp and contains more than 80% of repetitive sequences, making positional cloning difficult. Here, we demonstrate that the combined analysis of genomes from wheat species with different ploidy levels can be exploited for positional cloning in bread wheat. We have mapped the Pm3b gene in hexaploid wheat to a genetic interval of 0.97 centimorgan (cM). The diploid T. monococcum and the tetraploid T. turgidum ssp. durum provided models for the A genome of hexaploid wheat and allowed to establish a physical contig spanning the Pm3 locus. Although the haplotypes at the Pm3 locus differed markedly between the three species, a large resistance gene-like family specific to wheat group 1 chromosomes was consistently found at the Pm3 locus. A candidate gene for Pm3b was identified using partial sequence conservation between resistant line Chul and T. monococcum cv. DV92. A susceptible Pm3b mutant, carrying a single-base pair deletion in the coding region of the candidate gene was isolated. When tested in a single cell transformation assay, the Pm3b candidate gene conferred race-specific resistance to powdery mildew. These results demonstrate that the candidate gene, a member of the coiled-coil nucleotide binding site leucine-rich repeat (NBS-LRR) type of disease resistance genes, is the Pm3b gene.  相似文献   

17.
Ban T  Watanabe N 《Hereditas》2001,135(2-3):95-99
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive diseases of wheat in areas where the weather is warm and humid after heading. Previous studies indicate that the level of resistance to FHB varies not only among wheat cultivars but also among some of their wild relatives. No accession, however, has yet been identified to be completely immune to FHB among the Gramineae. It is known that durum wheat (Triticum turgidum L. conv. durum) is consistently more susceptible to FHB than common wheat (T. aestivum L.). The importance of the D genome in conferring resistance to FHB has been emphasized. Meanwhile, recent studies using molecular markers report effective QTLs on chromosome 3BS in a hexaploid population and on 3A in tetraploid recombinant inbred chromosome lines. In this study, we performed an evaluation of the effects of homoeologous group 3 chromosomes of T. turgidum ssp. dicoccoides on resistance to FHB using a set of chromosome substitution lines of a durum wheat cultivar 'Langdon'. The accession of T. turgidum ssp. dicoccoides examined in this study was more susceptible for Type II resistance (resistance to spread of FHB in the head) than 'Langdon'. Both of the chromosome substitution lines of 3A and 3B showed the same level of resistance with 'Langdon', but bleaching of the heads was completely prevented in the substitution lines of chromosome 3A without relationship to rachis fragility. It was concluded that the chromosome 3A of T. turgidum ssp. dicoccoides carries resistance gene(s) to head bleaching caused by FHB.  相似文献   

18.
The Glu-1 locus, encoding the high-molecular-weight glutenin protein subunits, controls bread-making quality in hexaploid wheat (Triticum aestivum) and represents a recently evolved region unique to Triticeae genomes. To understand the molecular evolution of this locus region, three orthologous Glu-1 regions from the three subgenomes of a single hexaploid wheat species were sequenced, totaling 729 kb of sequence. Comparing each Glu-1 region with its corresponding homologous region from the D genome of diploid wheat, Aegilops tauschii, and the A and B genomes of tetraploid wheat, Triticum turgidum, revealed that, in addition to the conservation of microsynteny in the genic regions, sequences in the intergenic regions, composed of blocks of nested retroelements, are also generally conserved, although a few nonshared retroelements that differentiate the homologous Glu-1 regions were detected in each pair of the A and D genomes. Analysis of the indel frequency and the rate of nucleotide substitution, which represent the most frequent types of sequence changes in the Glu-1 regions, demonstrated that the two A genomes are significantly more divergent than the two B genomes, further supporting the hypothesis that hexaploid wheat may have more than one tetraploid ancestor.  相似文献   

19.
Li W  Huang L  Gill BS 《Plant physiology》2008,146(1):200-212
Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the A(m) genome of hexaploid Triticum zhukovskyi (A(m)AG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed.  相似文献   

20.
Use of wild relatives to improve salt tolerance in wheat   总被引:3,自引:0,他引:3  
There is considerable variability in salt tolerance amongst members of the Triticeae, with the tribe even containing a number of halophytes. This is a review of what is known of the differences in salt tolerance of selected species in this tribe of grasses, and the potential to use wild species to improve salt tolerance in wheat. Most investigators have concentrated on differences in ion accumulation in leaves, describing a desirable phenotype with low leaf Na+ concentration and a high K+/Na+ ratio. Little information is available on other traits (such as "tissue tolerance" of accumulated Na+ and Cl-) that might also contribute to salt tolerance. The sources of Na+ "exclusion" amongst the various genomes that make up tetraploid (AABB) durum wheat (Triticum turgidum L. ssp. durum), hexaploid (AABBDD) bread wheat (Triticum aestivum L. ssp. aestivum), and wild relatives (e.g. Aegilops spp., Thinopyrum spp., Elytrigia elongata syn. Lophopyrum elongatum, Hordeum spp.) are described. The halophytes display a capacity for Na+ "exclusion", and in some cases Cl- "exclusion", even at relatively high salinity. Significantly, it is possible to hybridize several wild species in the Triticeae with durum and bread wheat. Progenitors have been used to make synthetic hexaploids. Halophytic relatives, such as tall wheatgrass spp., have been used to produce amphiploids, disomic chromosome addition and substitution lines, and recombinant lines in wheat. Examples of improved Na+ "exclusion" and enhanced salt tolerance in various derivatives from these various hybridization programmes are given. As several sources of improved Na+ "exclusion" are now known to reside on different chromosomes in various genomes of species in the Triticeae, further work to identify the underlying mechanisms and then to pyramid the controlling genes for the various traits, that could act additively or even synergistically, might enable substantial gains in salt tolerance to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号