首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To facilitate the development of new materials for use in batteries, it is necessary to develop ab initio full-electron computational techniques for modeling potential new battery materials. Here, we tested density functional theory procedures that are accurate enough to obtain the energetics of a zinc/copper voltaic cell. We found the magnitude of the zero-point energy correction to be 0.01–0.2 kcal/mol per atom or molecule and the magnitude of the dispersion correction to be 0.1–0.6 kcal/mol per atom or molecule for Zn n , (H2O) n , \( \mathrm{Zn}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), \( \mathrm{Cu}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), and Cu n . Counterpoise correction significantly affected the values of ?\( {E}_n^{\mathrm{abs}} \), ?\( {E}_n^{\mathrm{coh}} \), and ?Esolv by 1.0–3.1 kcal/mol per atom or molecule at the B3PW91/6-31G(d) level of theory, but by only 0.04–0.4 kcal/mol per atom or molecule at the B3PW91/cc-pVTZ level of theory. The application of B3PW91/6-31G(d) yielded results that differed from macroscopic experimental values by 0.1–7.1 kcal/mol per atom or molecule, whereas applying B3PW91/cc-pVTZ produced results that differed from macroscopic experimental values by 0.1–4.8 kcal/mol per atom or molecule, with the smallest differences occurring for reactions with a small macroscopic experimental ?E and the largest differences occurring for reactions with a large macroscopic experimental ?E, implying size consistency.  相似文献   

2.
The hybrid density functional theory is applied to calculate the electron paramagnetic resonance parameters, i.e, the g- and A-tensors of some planar Cobalt(II) complexes with a C2v symmetry. Calculations were done for four systems: Co(acacen), Co(tacacen), Co(seacacen) and Co(sacsac)2. The following hybrid functionals were employed: B3LYP, B3PW91, mPW1PW91 and PBE0. The expected large deviation of the g- and A-tensors is well reproduced, and is in very good agreement with the experimental observations. Comparative study shows that the PBE0 hybrid model yields the best agreement with experimental data.  相似文献   

3.
The change in enthalpy and rate constants for the reactions of yeast hexokinase isozymes, PI (Hxk1) and PII (Hxk2), was determined at pH 7.6 and 25 degrees C by isothermal titration calorimetry. The reactions were done in five buffer systems with enthalpy of protonation varying from -1.22 kcal/mol (phosphate) to -11.51 kcal/mol (Tris), allowing the determination of the number of protons released during glucose phosphorylation. The reaction is exothermic for both isozymes with a small, but significant (p < 0.0001), difference in the enthalpy of reaction (Delta HR), with an Delta HR of -5.1 +/- 0.2 (mean +/- S.D.) kcal/mol for Hxk1, and an Delta HR of -3.3 +/- 0.3 (mean +/- S.D.) kcal/mol for Hxk2. The Km for ATP determined by ITC was very similar to those reported in the literature for both isozymes. The effect of NaCl and KCl, from 0 to 200 mM, showed that although the rate of reaction decreases with increasing ionic strength, no change in the Delta HR was observed suggesting an entropic nature for the ionic strength. The differences in Delta HR obtained here for both isozymes strongly suggest that, besides glucose phosphorylation, another side reaction such as ATP hydrolysis and/or enzyme phosphorylation is taking place.  相似文献   

4.
In this work, we present a computational investigation on the reactions between two well-known antioxidants (quercetin and morin) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). A density functional theory (DFT) approach with the B3LYP functional and the 6-31G(d,p) basis set was used for the simulations. The structural and energetic parameters (Gibbs free-energy, ΔG, and Gibbs free-energy of activation, ΔG++) were determined to provide information on the antioxidant activity as well as to evaluate the contributions of each hydroxyl group to the referred property. According to the results obtained, quercetin presented three hydroxyls as being thermodynamically spontaneous in the reaction with DPPH (4\(^{\prime }\)-ArOH, 3\(^{\prime }\)-ArOH, and 3-ArOH, with ΔG = -4.93 kcal/mol, -2.89 kcal/mol, and -1.87 kcal/mol, respectively) against only two in the case of morin (2\(^{\prime }\)-ArOH and 3-ArOH, with ΔG = -7.56 kcal/mol and -4.57 kcal/mol, respectively). Hence, quercetin was found to be a more efficient antioxidant, which is in agreement with different experimental and computational investigations of bond dissociation enthalpies (BDEs). However, the order of contribution of the OH groups of each compound to the antioxidant potential present some differences when compared to what was seen in the previous investigations, especially for morin. These findings are in contrast to what was observed in studies based on the determinations of BDEs. Therefore, experimental investigations on the hydrogen-atom transfer mechanism (HAT) for both compounds are encouraged in order to clarify these observations.  相似文献   

5.
RNA polymerase II catalyzes the nucleotidyl transfer reaction for messenger RNA synthesis in eukaryotes. Two crystal structures of this system have been resolved, each with its own defects in the coordination sphere of Mg2+(A) resulting from chemical modifications. We have used both structures and also a novel hybrid of the two that allows a better exploration of the parts of configuration space that reflect substrate–enzyme interactions. MD and QM/MM calculations have been performed, the latter with the semiempirical AM1/d‐PhoT method, calibrated against density functional theory. Reaction path scans in 1‐D provided insights about the role of Mg2+ (A) which turns out to be more structural than catalytic. In contrast, 1‐D scans of the incorporation of the nucleotidyl group yielded barriers that were much too high, necessitating the use of 2‐D reaction coordinates. Three different proton acceptors for the initial reaction step were examined. For those models based on the two PDB structures the 2‐D scans continued to yield very high barriers, indicating that the reaction is unlikely to proceed from these configurations. On the other hand, two hybrid models, chosen from the early and late parts of a 12ns molecular dynamics simulation yielded greatly reduced barriers in the range of ~17 to ~27 kcal/mol for the three proton acceptors, as compared to the experimental estimate of 18 kcal/mol. The final step, release of pyrophosphate, was found to be facile. Our overall mechanism involves only active site residues or water without the need for external reactive agents such as the hydroxide ion previously proposed. Proteins 2015; 83:268–281. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The hydration of CO(2) and the dehydration of HCO(3)(-) catalyzed by the carbonic anhydrases is accompanied by the transfer of protons between solution and the zinc-bound water molecule in the active site. This transfer is facilitated by amino acid residues of the enzyme which act as intramolecular proton shuttles; variants of carbonic anhydrase lacking such shuttle residues are enhanced or rescued in catalysis by intermolecular proton transfer from donors such as imidazole in solution. The resulting rate constants for proton transfer when compared with the values of the pK(a) of the donor and acceptor give Bronsted plots of high curvature. These data are described by Marcus theory which shows an intrinsic barrier for proton transfer from 1 to 2 kcal/mol and work terms or thermodynamic contributions to the free energy of reaction from 4 to10 kcal/mol. The interpretation of these Marcus parameters is discussed in terms of the well-studied pathway of the catalysis and structure of the enzymes.  相似文献   

7.
The applicability of several popular density functionals in predicting the geometrical parameters and energetics of transition metal carbonyl complexes of iron, ruthenium and osmium has been studied. The methods tested include pure GGA functionals (BLYP, BP86, OPBE, HCTH, PBE, VSXC) and hybrid GGA functionals (B3PW91, B3LYP, PBE1PBE, MPW1K, B97-2, B1B95, PBE1KCIS). The effect of changing the metal basis set from Huzinaga’s all-electron basis to SDD scECP basis was also studied. The results show, that hybrid functionals are needed in order to describe the back-bonding ability of the carbonyl ligands as well as to deal with metal-metal bonds. The best general performance, when also the computational cost was considered, was obtained with hybrid functionals B3PW91 and PBE1PBE, which therefore provide an efficient tool for solving problems involving large or medium sized transition metal carbonyl compounds. Figure Optimized structure for one of the test molecules, the Ru3(CO)12 cluster, showing the staggered conformation of the carbonyl ligands  相似文献   

8.
M J Chen  K H Mayo 《Biochemistry》1991,30(26):6402-6411
Platelet factor 4 (PF4) monomers (7800 daltons) form dimers and tetramers in varying molar ratios under certain solution conditions [Mayo, K. H., & Chen, M. J. (1989) Biochemistry 28, 9469]. The presence of a simplified aromatic region (one Tyr and two His) and resolved monomer, dimer, and tetramer Y60 3,5 ring proton resonances makes study of PF4 aggregate association/dissociation thermodynamics and kinetics possible. PF4 protein subunit association/dissociation equilibrium thermodynamic parameters have been derived by 1H NMR (500MHz) resonance line-fitting analysis of steady-state Y60 3,5 ring proton resonance monomer-dimer-tetramer populations as a function of temperature from 10 to 40 degrees C. Below 10 degrees C and above 40 degrees C, resonance broadening and overlap severely impaired analysis. Enthalpic and entropic contributions to dimer association Gibb's free energy [-5.1 kcal/mol (30 degrees C)] are +2.5 +/- 1 kcal/mol and +26 +/- 7 eu, respectively, and for tetramer association Gibb's free energy [-5.7 kcal/mol (30 degrees C)], they are -7.5 +/- 1 kcal/mol and -7 +/- 3 eu, respectively. These thermodynamic parameters are consistent with low dielectric medium electrostatic/hydrophobic interactions governing dimer formation and hydrogen bonding governing tetramer formation. Association/dissociation kinetic parameters, i.e., steady-state jump rates, have been derived from exchange-induced line-width increases and from 1H NMR (500 MHz) saturation-transfer and spin-lattice (Tl) relaxation experiments. From dissociation jump rates and equilibrium constants, association rate constants were estimated. For dimer and tetramer equilibria at 30 degrees C, unimolecular dissociation rate constants are 35 +/- 10 s-1 for dimer dissociation and 6 +/- 2 s-1 for tetramer dissociation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Zhang X  Bruice TC 《Biochemistry》2007,46(18):5505-5514
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of Rubisco large subunit methyltransferase (LSMT). It was found that the appearance of a water channel is required for the stepwise methylation by S-adenosylmethionine (AdoMet). The water channel appears in the presence of AdoMet (LSMT.Lys-NH3+.AdoMet), but is not present immediately after methyl transfer (LSMT.Lys-N(Me)H2+.AdoHcy). The water channel allows proton dissociation from both LSMT.AdoMet.Lys-NH3+ and LSMT.AdoMet.Lys-N(Me)H2+. The water channel does not appear for proton dissociation from LSMT.AdoMet.Lys-N(Me)2H+, and a third methyl transfer does not occur. By QM/MM, the calculated free energy barrier of the first methyl transfer reaction catalyzed by LSMT (Lys-NH2 + AdoMet --> Lys-N(Me)H2+ + AdoHcy) is DeltaG++ = 22.8 +/- 3.3 kcal/mol. This DeltaG++ is in remarkable agreement with the value 23.0 kcal/mol calculated from the experimental rate constant (6.2 x 10-5 s-1). The calculated DeltaG++ of the second methyl transfer reaction (AdoMet + Lys-N(Me)H --> AdoHcy + Lys-N(Me)2H+) at the QM/MM level is 20.5 +/- 3.6 kcal/mol, which is in agreement with the value 22.0 kcal/mol calculated from the experimental rate constant (2.5 x 10-4 s-1). The third methyl transfer (Lys-N(Me)2 + AdoMet --> Lys-N(Me)3+ + AdoHcy) is associated with an allowed DeltaG++ of 25.9 +/- 3.2 kcal/mol. However, this reaction does not occur because a water channel does not form to allow the proton dissociation of Lys-N(Me)2H+. Future studies will determine whether the product specificity of lysine (mono, di, and tri) methyltransferases is determined by the formation of water channels.  相似文献   

10.
Evaluating the reactivity of the metal–thiolate clusters in metallothionein (MT) is a key step in understanding the biological functions of this protein. The effects of the metal clustering and protein environment on the thiolate reactivity with hydrogen peroxide (H2O2) were investigated by performing quantum theory calculations with chemical accuracy at two levels of complexity. At the first level, the reactivity with H2O2 of a model system ([(Zn)3(MeS)9]3?, MeS is methanethiolate) of the β domain cluster of MT was evaluated using density functional theory (DFT) with the mPW1PW91 functional. At the second level of complexity, the protein environment was included in the reactant system and the calculations were performed with the hybrid ONIOM method combining the DFT–mPW1PW91 and the semiempirical PM6 levels of theory. In these conditions, the energy barrier for the oxidation of the most reactive terminal thiolate was 21.5 kcal mol?1. This is 3 kcal mol?1 higher than that calculated for the terminal thiolate in the model system [(Zn)3(MeS)9]3? and about 7 kcal mol?1 higher than that obtained for the free thiolate. In spite of this rise of the energy barrier induced by the protein environment, the thiolate oxidation by H2O2 is confirmed as a possible way for metal release from MT. On the other hand, the results suggest that the antioxidant role of MT in the living cell cannot be as important as that of glutathione (which bears a free thiol).  相似文献   

11.
The electronic structures and spectroscopic properties of two complexes [M(pic)3] (M = Ir, Rh) containing picolinate as bidentate ligands have been calculated by means density functional theory (DFT) and time-dependent DFT/TD-DFT using three hybrid functionals B3LYP, PBE0 and mPW1PW91. The PBE0 and mPW1PW91 functionals, which have the same HF exchange fraction (25%), give similar results and do not differ drastically from B3LYP results. Calculated geometric parameters of the complexes are in good agreement with the available experimental data. The UV absorptions observed in acetonitrile were assigned on the basis of singlet state transitions. The most intense band observed in the UV-C region corresponds to ligand-to-ligand charge transfer states (LLCT) in both complexes. The theoretical spectrum of the rhodium complex is characterized by a large degree of mixing between metal-to-ligand-charge-transfer (MLCT), LLCT and metal centered (MC) states in the UV-A region. The presence of low-lying excited states with MC character affects the absorption spectrum under spin-orbit coupling (SOC) effects and play important roles in the photochemical properties.
Graphical abstract Frontier molecular orbital diagram of mer-M(pic)3 (M=Ir, Rh).
  相似文献   

12.
A range of ab initio calculations were carried out on the axial and equatorial anomers of the model carbohydrate 2-ethoxy tetrahydropyran to evaluate the level of theory required to accurately evaluate the glycosyl dihedral angle and the anomeric ratio. Vacuum CCSD(T)/CBS extrapolations at the global minimum yield DeltaE = E(equatorial) - E(axial) = 1.42 kcal/mol. When corrected for solvent (by the IEFPCM model), zero-point vibrations and entropy, DeltaG(298) = 0.49 kcal/mol, in excellent agreement with the experimental value of 0.47 +/- 0.3 kcal/mol. A new additivity scheme, the layered composite method (LCM), yields DeltaE to within 0.1 kcal/mol of the CCSD(T)/CBS result at a fraction of the computer requirements. Anomeric ratios and one-dimensional torsional surfaces generated by LCM and the even more efficient MP2/cc-pVTZ level of theory are in excellent agreement, indicating that the latter is suitable for force-field parameterization of carbohydrates. Hartree-Fock and density functional theory differ from CCSD(T)/CBS for DeltaE by approximately 1 kcal/mol; they show similar deviations in torsional surfaces evaluated from LCM. A comparison of vacuum and solvent-corrected one- and two-dimensional torsional surfaces indicates the equatorial form of 2-ethoxy tetrahydropyran is more sensitive to solvent than the axial.  相似文献   

13.
Dihydroorotase (DHOase, EC 3.5.2.3) from the extreme thermophile Bacillus caldolyticus has been subcloned, sequenced, expressed, and purified as a monomer. The catalytic properties of this thermophilic DHOase have been compared with another type I enzyme, the DHOase domain from hamster, to investigate how the thermophilic enzyme is adapted to higher temperatures. B. caldolyticus DHOase has higher Vmax and Ks values than hamster DHOase at the same temperature. The thermodynamic parameters for the binding of L-dihydroorotate were determined at 25 degrees C for hamster DHOase (deltaG = -6.9 kcal/mol, deltaH = -11.5 kcal/mol, TdeltaS = -4.6 kcal/mol) and B. caldolyticus DHOase (deltaG = -5.6 kcal/mol, deltaH = -4.2 kcal/mol, TdeltaS = +1.4 kcal/mol). The smaller enthalpy release and positive entropy for thermophilic DHOase are indicative of a weakly interacting Michaelis complex. Hamster DHOase has an enthalpy of activation of 12.3 kcal/mol, similar to the release of enthalpy upon substrate binding, rendering the kcat/Ks value almost temperature independent. B. caldolyticus DHOase shows a decrease in the enthalpy of activation from 12.2 kcal/mol at temperatures from 30 to 50 degrees C to 5.3 kcal/mol for temperatures of 50-70 degrees C. Vibrational energy at higher temperatures may facilitate the transition ES --> ES(double dagger), making kcat/Ks almost temperature independent. The pseudo-first-order rate constant for water attack on L-dihydroorotate, based on experiments at elevated temperature, is 3.2 x 10(-11) s(-1) at 25 degrees C, with deltaH(double dagger) = 24.7 kcal/mol and TdeltaS(double dagger) = -6.9 kcal/mol. Thus, hamster DHOase enhances the rate of substrate hydrolysis by a factor of 1.6 x 10(14), achieving this rate enhancement almost entirely by lowering the enthalpy of activation (delta deltaH(double dagger) = -19.5 kcal/mol). Both the rate enhancement and transition state affinity of hamster DHOase increase steeply with decreasing temperature, consistent with the development of H-bonds and electrostatic interactions in the transition state that were not present in the enzyme-substrate complex in the ground state.  相似文献   

14.
Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting 1H and 13C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating 13C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae?=?1.66 ppm), for 1H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae?=?0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating 1H and 13C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.
Graphical Abstract Mean absolute errors for 1H and 13C chemical shifts and computational times of neutral toluene molecule with aug-cc-pVDZ basis set and CSGT approach
  相似文献   

15.
A systematic theoretical investigation on the interaction energies of halogen-ionic bridges formed between halide ions and the polar H atoms bonded to N of protein moieties has been carried out by employing a variety of density functional methods. In this procedure, full geometry optimizations are performed at the Møller-Plesset second-order perturbation (MP2) level of theory in conjunction with the Dunning’s augmented correlation-consistent basis set, aug-cc-pVDZ. Subsequently, two distinct basis sets, i.e. 6-311++G(df,pd) and aug-cc-pVTZ, are employed in the following single-point calculations so as to check the stability of the results obtained at the different levels of DFT. The performance of DFT methods has been evaluated by comparing the results with those obtained from the rigorous MP2 theory. It is shown that the B98, B97-1, and M05 give the lowest root-mean-square error (RMSE) for predicting fluoride-binding energies, M05-2X, MPW1B95, and MPW1PW91 have the best performance in reproducing chloride-binding energies, B97-1, PBEKCIS, and PBE1KCIS present the optimal result for bromide-binding energies, while B97-1, MPW1PW91, and TPSS perform most well on iodide-binding energies. The popular B3LYP functional seems to be quite modest for studying halide-protein moiety interactions. In addition, the PBE1KCIS functional provide accuracies close to the computationally expensive MP2 method for the calculation of interaction energies of all halide-binding systems.  相似文献   

16.
Homoprotocatechuate (HPCA) dioxygenases are enzymes that take part in the catabolism of aromatic compounds in the environment. They use molecular oxygen to perform the ring cleavage of ortho-dihydroxylated aromatic compounds. A theoretical investigation of the catalytic cycle for HPCA 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD) was performed using hybrid DFT with the B3LYP functional, and a reaction mechanism is suggested. Models of different sizes were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the enzyme follows a reaction pathway similar to that for other non-heme iron dioxygenases, and for the manganese-dependent analog MndD, although with different energetics. The computational results suggest that the rate-limiting step for the whole reaction of Bf 2,3-HPCD is the protonation of the activated oxygen, with an energy barrier of 17.4 kcal/mol, in good agreement with the experimental value of 16 kcal/mol obtained from the overall rate of the reaction. Surprisingly, a very low barrier was found for the O-O bond cleavage step, 11.3 kcal/mol, as compared to 21.8 kcal/mol for MndD (sextet spin state). This result motivated additional studies of the manganese-dependent enzyme. Different spin coupling between the unpaired electrons on the metal and on the evolving substrate radical was observed for the two enzymes, and therefore the quartet spin state potential energy surface of the MndD reaction was studied. The calculations show a crossing between the sextet and the quartet surfaces, and it was concluded that a spin transition occurs and determines a barrier of 14.4 kcal/mol for the O-O bond cleavage, which is found to be the rate-limiting step in MndD. Thus the two 83% identical enzymes, using different metal ions as co-factors, were found to have similar activation energies (in agreement with experiment), but different rate-limiting steps.  相似文献   

17.
The effect of microsolvation on zwitterionic glycine, considering both (-NH3(+)) as proton donor and (-COO(-)) as proton acceptor at correlated ab initio (MP2) level and density functional methods (B3LYP, PW91, MPW1PW91 and PBE) using 6-311++G** basis set has been reported. DFT methods have been employed so as to compare the performance/quality of different gradient-corrected correlation functionals (PW91, PBE), hybrid functionals (B3LYP, MPW1PW91) and to predict the near quantitative structural and vibrational properties, at reduced computational cost. B3LYP method outperforms among the different DFT methods for the computed hydrogen bond distances and found closer to the value obtained by correlated MP2 level, whereas MPW1PW91 and PBE methods shows very similar values but approximately 0.03 A less, compared to B3LYP method. MP2 calculation and single point CCSD(T)//MP2 calculation have been considered to decompose the interaction energy, including corrections for basis set superposition error (BSSE). Moreover, charge distribution analysis has also been carried out to understand the long raised questions, how and why the two body energies have significant contribution to the total binding energy.  相似文献   

18.
The mechanism and potential energy surface for the Baeyer-Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105-Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal x mol(-1) at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal x mol(-1) relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal x mol(-1) and the second step by 19.5 kcal x mol(-1). The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal x mol(-1) relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required. Figure Second TS (18TS) in the Baeyer-Villiger oxidation in a mutant of CALB. Distances in A  相似文献   

19.
The mechanism of nitric oxide reduction in a ba(3)-type heme-copper oxidase has been investigated using density functional theory (B3LYP). Four possible mechanisms have been studied and free energy surfaces for the whole catalytic cycle including proton and electron transfers have been constructed by comparison to experimental data. The first nitric oxide coordinates to heme a(3) and is partly reduced having some nitroxyl anion character ((3)NO(-)), and it is thus activated toward the attack by the second N-O. In this reaction step a cyclic hyponitrous acid anhydride intermediate with the two oxygens coordinating to Cu(B) is formed. The cyclic hyponitrous acid anhydride is quite stable in a local minimum with high barriers for both the backward and forward reactions and should thus be observable experimentally. To break the N-O bond and form nitrous oxide, the hyponitrous acid anhydride must be protonated, the latter appearing to be an endergonic process. The endergonicity of the proton transfer makes the barrier of breaking the N-O bond directly after the protonation too high. It is suggested that an electron should enter the catalytic cycle at this stage in order to break the N-O bond and form N(2)O at a feasible rate. The cleavage of the N-O bond is the rate limiting step in the reaction mechanism and it has a barrier of 17.3 kcal/mol, close to the experimental value of 19.5 kcal/mol. The overall exergonicity is fitted to experimental data and is 45.6 kcal/mol.  相似文献   

20.
Partial amino acid sequences, the essential ionizable groups directly involved in catalytic reaction, and the subsite structure of beta-D-glucosidase purified from a Streptomyces sp. were investigated in order to analyze the reaction mechanism. On the basis of the partial amino acid sequences, the enzyme seemed to belong to the family 1 of beta-glucosidase in the classification of glycosyl hydrolases by Henrissat (1991). Dependence of the V and Km values on pH, when the substrate concentration was sufficiently lower than Km, gave the values of 4.1 and 7.2 for the ionization constants, pKe1 and pKe2 of essential ionizable groups 1 and 2 of the free enzyme, respectively. When the dielectric constant of the reaction mixture was decreased in the presence of 10% methanol, the pKe1 and pKe2, values shifted to higher, to +0.60 and +0.35 pH unit, respectively. The findings supported the notion that the essential ionizable groups of the enzyme were a carboxylate group (-COO-, the group 1) and a carboxyl group (-COOH, the group 2). The subsite affinities Ai's in the active site were evaluated on the basis of the rate parameters of laminarioligosaccharides. Subsites 1 and 2 having positive Ai values (A1 was 1.10 kcal/mol and A2 was 4.98 kcal/mol) were considered to probably facilitate the binding of the substrate to the active site. However, the subsites 3 and 4 showed negative Ai values (A3 was -0.21 kcal/mol and A4 was -2.8 kcal/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号