首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Sone  A Naqui  C Kumar    B Chance 《The Biochemical journal》1984,223(3):809-813
A caa3-type terminal cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 containing three subunits showed conversion from resting into pulsed form. Upon pulsing (reduction and re-oxidation), the cytochrome c oxidase activity increased over 10-fold. This enhanced activity of the pulsed enzyme gradually decayed. Addition of phospholipids, necessary for the enzyme activity, did not affect this decay process. Small changes in the absorption spectrum were observed for the resting-into-pulsed transition and for H2O2 ligation to the pulsed enzyme. The e.p.r. spectrum of the resting enzyme was very similar to that of mitochondrial enzyme, but the transient g = 5, 1.78 and 1.69 set of e.p.r. signals, associated with the pulsed bovine heart oxidase, were not observed in the case of pulsed bacterium-PS3 enzyme.  相似文献   

2.
Cytochrome caa3 (cytochrome oxidase) from the thermophilic bacterium PS3 can exhibit full catalytic activity in the presence of ascorbate and TMPD or other electron donors and in the absence of added soluble c-type cytochromes. It appears to possess only a low-affinity and not a high-affinity site for the soluble cytochromes. Proteoliposomal cytochrome caa3 develops an effective membrane potential in the presence of ascorbate and TMPD or PMS, in the absence of added soluble cytochrome c. Reduction of the a3 centre is blocked in the presence of cyanide. During reductive titrations of the cyanide-inhibited enzyme, electrons initially equilibrate among three centres, the c haem, the a haem and one of the associated Cu atoms. During steady-state turnover, electrons probably enter the complex via the bound c haem; the a haem and perhaps an associated CuA atom are reduced next. It is concluded that, despite its size and hydrophobic association with the aa3 complex, the haem c-containing subunit can behave in an analogous way to that of mammalian cytochrome c, bound at the high-affinity site of the eucaryotic enzyme.  相似文献   

3.
A new type of dissimilatory bisulfite reductase, desulfofuscidin, was isolated from the nonsporeforming thermophilic sulfate-reducing microorganism Thermodesulfobacterium commune. The molecular weight of the enzyme was estimated at 167,000 by sedimentation equilibrium, and the protein was pure by both disc electrophoresis and ultracentrifugation. The bisulfite reductase was a tetramer and had two types of subunits with an α2β2 structure and an individual molecular weight of 47,000. The enzyme exhibited absorption maxima at 576, 389, and 279 nm, with a weak band at 693 nm. Upon the addition of dithionite, the absorption maxima at 576 and 693 nm were weakened, and a new band appeared at 605 nm. The protein reacted with CO in the presence of dithionite to give a complex with absorption peaks at 593, 548, and 395 nm. The extinction coefficients of the purified enzyme at 576, 389, and 279 nm were 89,000, 310,000, and 663,000 M−1 cm−1, respectively. Siroheme was detected as the prosthetic group. The protein contains 20 to 21 nonheme iron atoms and 16 to 17 acid-labile sulfur groups per molecule. The data suggest the presence of four sirohemes and probably four (4Fe-4S) centers per molecule by comparison with desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio species. The protein contains 36 cysteine residues and is high in acidic and aromatic amino acids. The N-terminal amino acids of the α and β subunits were threonine and serine, respectively. With reduced methyl viologen as electron donor, the major product of sulfite reduction was trithionate, and the pH optimum for activity was 6.0. The enzyme was stable to 70°C and denatured rapidly above this temperature. The dependence of T. commune bisulfite reductase activity on temperature was linear between 35 and 65°C, and the Q10 values observed were above 3. The presence of this new type of dissimilatory bisulfite reductase in T. commune is discussed in terms of taxonomic significance.  相似文献   

4.
Cytochrome oxidase from the thermophilic bacterium PS3 which contains three types of polypeptide subunits are reconstituted into liposomes by a freeze-thaw technique. The reconstituted enzyme caused acidification of the medium during cytochrome c oxidation with a stoichiometry of up to 0.8 H+/e. Uptake of K+ ions in the presence of valinomycin occurred with a stoichiometry between 1.5 and 2 K+/e. Dicyclohexylcarbodiimide inhibited the acidification and decreased the stoichiometry of K+ ion uptake to about 1 K+/e. This bacterial oxidase thus appears to be a proton pump with properties similar to the mitochondrial enzyme.  相似文献   

5.
6.
Cytochrome c6 is a small, soluble electron carrier between the two membrane-bound complexes cytochrome b6f and photosystem I (PSI) in oxygenic photosynthesis. We determined the solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus by NMR spectroscopy and molecular dynamics calculations based on 1586 interresidual distance and 28 dihedral angle restraints. The overall fold exhibits four alpha-helices and a small antiparallel beta-sheet in the vicinity of Met58, one of the axial heme ligands. The flat hydrophobic area in this cytochrome c6 is conserved in other c6 cytochromes and even in plastocyanin of higher plants. This docking region includes the site of electron transfer to PSI and possibly to the cytochrome b6f complex. The binding of cytochrome c6 to PSI in green algae involves interaction of a negative patch with a positive domain of PSI. This positive domain has not been inserted at the evolutionary level of cyanobacteria, but the negatively charged surface region is already present in S. elongatus cytochrome c6 and may thus have been optimized during evolution to improve the interaction with the positively charged cytochrome f. As the structure of PSI is known in S.elongatus, the reported cytochrome c6 structure can provide a basis for mutagenesis studies to delineate the mechanism of electron transfer between both.  相似文献   

7.
The stoichiometry of vectorial H+ ejection, coupled to ferrocytochrome c oxidation by a three-subunit bacterial cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3, was measured. Three methods of measuring the H+/e- ratio were applied to proteoliposomes containing a relatively small amount of PS3 cytochrome oxidase, which showed a relatively low oxidation rate and a very low H+ leakage, as follows: (a) simultaneous measurements of H+ ejection and cytochrome c oxidation upon addition of a yeast ferrocytochrome c pulse, which enable us to calculate the H+/e- ratio as H+ ejected per cytochrome c oxidized; (b) computer simulations to find out the fit for the pH meter trace by changing the H+/e- ratio and the velocity constant of leakage; and (c) two successive measurements of initial rates of H+ movement in the absence and presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The H+/e- ratios obtained were 1.39, the 10-s value after ferrocytochrome c addition in (a), 1.35 in (b), and 1.33 in (c). This high H+/e- stoichiometry observed, exceeding 1 and as high as 1.4, is discussed with respect to the controversy of the H+/e- ratio at the cytochrome oxidase site.  相似文献   

8.
The gene coding for four subunits of cytochrome aa3-type oxidase was isolated from a genomic DNA library of the thermophilic bacterium PS3 and sequenced. The N-terminus of each subunit was also sequenced to verify the initiation site of the reading frame. The deduced amino acid sequences contained 615 amino acid residues for subunit I (CO1/caaB product), 333 residues for subunit II (CO2/caaA product), 207 residues for subunit III (CO3/caaC product), and 109 residues for subunit IV (CO4/caaD product) after processing. Re-examination of the sequencing of caa revealed a longer open reading frame for CO1, which contains 14 transmembrane segments instead of 12 [Sone et al. (1988) J. Biochem. 103, 606-610], although the main portions of the sequences constituting cytochrome a (FeA), cytochrome a3 (FeB), and CuB are correct. PS3 CO2 has an additional sequence for cytochrome c after the CuA binding protein portion with 2 transmembrane segments, which is homologous to the mitochondrial counterpart. PS3 CO3 has DCCD-binding glutamyl residues but contains only 5 transmembrane segments, unlike the mitochondrial counterpart, which has 7 segments. The subunits of PS3 cytochrome oxidase (aa3-type) show clear similarity in amino acid sequences with those of cytochrome bo-type oxidase from Escherichia coli as well, in spite of the difference of hemes. PS3 CO3 and CO4 are much more similar to E. coli CO3 and CO4 than to mitochondrial CO3 and CO4, respectively.  相似文献   

9.
We have studied the structure-thermostability relationship using cytochromes c from mesophilic and thermophilic bacteria; Pseudomonas aeruginosa (PAc(551)) growing at 37 degrees C and Hydrogenobacter thermophilus (HTc(552)) at 72 degrees C and showed that only five residues primarily differentiate their stabilities. For a more comprehensive study, we found Hydrogenophilus thermoluteolus (Pseudomonas hydrogenothermophila) growing at 52 degrees C and showed the moderate stability of the cytochrome c from this bacterium (PHc(552)). To explore the stabilization mechanisms, the crystal structure of PHc(552) was determined by X-ray analysis. The solution structure of HTc(552) elucidated previously by NMR was refined using distributed computational implementation. Furthermore, the recently reported crystal structure of HTc(552) has become available [Travaglini-Allocatelli, C. et al. (2005) J. Biol. Chem. 280, 25729-25734]. When the structures of these three cytochromes c were combined, this revealed that the five residues, corresponding to those mentioned above, determine the difference of stabilities among them as well. These facts suggested the stabilization mechanisms as follows: (1) improved van der Waals interactions by packing optimization at the N-terminal helix, (2) attractive electrostatic interactions with the heme propionate group, and (3) favorable van der Waals interaction with the heme. This comparative study, by supplementing the structural information of PHc(552) with its complementary feature, demonstrates that just a small number of amino acid residues determine the overall molecular stability by means of additivity of the effects of their substitutions. It is interesting that, in naturally occurring proteins, these adaptation strategies are accommodated by these bacteria to survive in the wide range of thermal conditions.  相似文献   

10.
A tetra-heme and an octa-heme cytochrome c3 from the sulfate bacterium Desulfovibrio gigas have been crystallized. Diffraction quality crystals of the tetra-heme cytochrome are obtained from solution by the addition of polyethylene glycol at pH 6.5. The crystals are orthorhombic, space group P2(1)2(1)2 with unit cell parameters a = 42.27 A, b = 52.54 A and c = 52.83 A. The octa-heme cytochrome crystals develop from low ionic strength solutions of phosphate or Tris-Cl in the pH range 6.2-7.6. The crystals belong to the trigonal system, space group P3(1) or the enantiomorph P3(2), with unit cell parameters a = b = 57.4 A, c = 97.3 A, gamma = 120 degrees. Single crystal diffraction studies of the structures of these two low-potential cytochromes are in progress.  相似文献   

11.
《Experimental mycology》1980,4(2):123-134
We have examined the whole-cell DNA of homokaryons and dikaryons ofSchizophyllum commune by physical methods and reassociation kinetics. DNA with a single-strand length of 2800 bases was routinely isolated with urea—phosphate buffers and hydroxyapatite. Melting profiles indicate the bulk of the DNA to consist of a 57 ± 1.22% guanine plus cytosine content (GC) with a small amount of DNA melting at temperatures indicative of 22.1% GC. Analytical ultracentrifugations in CsCl gradients revealed a single band with buoyant density 1.718 g/ml equating to 59% GC. On the other hand, cesium chloride isopycnic centrifugation in the preparative ultracentrifuge disclosed a light satellite (ϱ = 1.687 g/ml, 27% GC) constituting about 2% of the whole-cell DNA. Analyses of the kinetics of reassociation of the whole-cell DNA by three different methods estimate the DNA of anS. commune homokaryotic cell to be 8.6 times that of anEscherichia coli cell (mean, 3.6 × 107 nucleotide pairs, NTP; range of experimental values 3.1 − 4.1 × 107 NTP). The dikaryotic cell would contain approximately twice this amount of DNA. We detect no other differences between the DNA of homokaryotic and dikaryotic cells as described within the limits of these methods. The reassociation data are best described with a single unique component accounting for 80–90% of the DNA and with a single repetitive fraction of 10 ± 2% of whole-cell DNA. Some ambiguity surrounds the repetition frequency and sequence complexity of the repetitive fraction because it does not reassociate well as a separate fraction (i.e., it does not reassociate with the anticipated rate constant, nor does it approach completion of the reaction) after being isolated by denaturation, reassociation, and isolation on hydroxyapatite.  相似文献   

12.
 A soluble monoheme c–type cytochrome c 6 has been isolated from the cyanobacterium Anabaena PCC 7119. It is a basic protein, with a molecular mass of 9.7 kDa, which accepts electrons from Anabaena ferredoxin in the ferredoxin-NADP+reductase-dependent NADPH cytochrome c reductase activity assay. The turnover of the reaction has an optimum pH at 7.5. Flavodoxin can also replace ferredoxin in this assay, but with only 20% efficiency. Plastocyanin from Anabaena PCC 7119, as well as the c 6 cytochromes from the green algae Chlorella fusca and Monoraphidium braunii are also shown to accept electrons from Anabaena ferredoxin. The reduction potential of cytochrome c 6 at pH 6.7 was determined to be 338 mV and is pH dependent, with pK a ox=8.4±0.1 and pK a red≈9.5. The ferric and ferrous cytochrome forms and their pH equilibria have been studied using visible, EPR and 1H-NMR spectroscopies. The amino acid sequence and the visible and NMR spectroscopic data indicate that the heme iron has a methionine-histidine axial coordination in the pH range 5–11. However, the EPR data for the ferricytochrome are complex and show that in this pH range five distinct forms are present. Between pH 5 and 9 the spectrum is dominated by two rhombic species, with g–values at 2.94, 2.29, 1.43 and at 2.84, 2.34, 1.56, which interconvert with a pK a of 8.4. The NMR data also show a main interconversion between two cytochrome forms at this pH, which coincides with that determined from the pH dependence of the reduction potential. Both these forms were associated with a methionine-histidine heme-iron coordination by correlation with the visible and NMR spectral data, although having crystal field parameters atypical for this type of coordination. Anabaena cytochrome c 6 is one more example of a heme protein for which the widely used crystal field analysis of the EPR data (truth diagram) fails to unequivocally determine the type of heme-iron ligation. Received: 17 May 1996 / Accepted: 13 January 1997  相似文献   

13.
Two thermophilic non-sporeforming sulfate-reducing bacteria (SRB) were isolated from microbial mats collected from an Icelandic hot spring. Strain JSP was a gram negative rod, with an average cell size of 2.8 x 0.5 microm. No flagella were found. Growth occurred between 55 and 74 degrees C with an optimum between 70 and 74 degrees C at pH 7.0. The G+C content was 40 mol%. Strain R1Ha3 was a gram negative vibrio-shaped rod with an average cell size of 1.7 x 0.4 microm. Motility was observed mediated by one polar flagellum. The growth optimum at pH 7.0 was 65 degrees C, and growth occurred between 45 and 70 degrees C. The G+C content was 38 mol%. In the presence of sulfate, both strains used lactate, pyruvate and H2 as electron donors. In addition, strain R1Ha3 used formate. Pyruvate was the only substrate supporting fermentative growth of both strains. Growth occurred with sulfate as well as thiosulfate as electron acceptors. Furthermore, strain R1Ha3 reduced nitrate and strain JSP reduced sulfite. Neither of the strains were able to oxidize lactate completely to CO2 and neither of the strains contained desulfoviridin. 16S rDNA sequencing placed strain JSP in the genus Thermodesulfobacterium and strain R1Ha3 in the genus Thermodesulfovibrio. Based on the DNA-DNA hybridization studies and differences in morphology and physiology to their closest relatives the two new isolates were considered as new species. Strain JSP is named Thermodesulfobacterium hveragerdense and strain R1Ha3 Thermodesulfovibrio islandicus.  相似文献   

14.
Cytochrome c(552) (PH c(552)) from moderately thermophilic Hydrogenophilus thermoluteolus exhibits stability intermediate between those of cytochrome c(552) (HT c(552)) from thermophilic Hydrogenobacter thermophilus and cytochrome c(551) (PA c(551)) from mesophilic Pseudomonas aeruginosa. To understand the mechanism of stabilization of PH c(552), we introduced mutations into PH c(552) at five sites, which, in HT c(552), are occupied by the amino acids responsible for stability higher than the less stable PA c(551). When PH c(552) Val-78 was mutated to Ile, as found in HT c(552), the resulting variant showed increased stability. Mutation of Ala-7, Met-13, and Tyr-34 to the corresponding residues in PA c(551) (Phe, Val, and Phe, respectively) resulted in destabilization. We also found that PH c(552) Lys-43 contributed to stability through the formation of an attractive electrostatic interaction with Asp-39. These results suggest that the intermediate stability of PH c(552) is due to the amino acids at these five sites.  相似文献   

15.
Zhai D  Huang X  Han X  Yang F 《FEBS letters》2000,472(2-3):293-296
tBid, the cleaved form of Bid, can induce cytochrome c (Cyt. c) release from rat heart mitochondria more efficiently and reproducibly than that from liver or brain mitochondria. Unlike Bax, such release was not prevented by cyclosphorin A, an inhibitor of the opening of permeability transition pore. Carbonyl-cyanide m-chlorophenyl-hydrazone or oligomycin also have no obvious effect on the release of Cyt. c. In contrast to ceramide, tBid-mediated Cyt. c release from mitochondria is independent of the redox state of Cyt. c. Furthermore, Bid or tBid can directly trigger the efflux of encapsulated Cyt. c or trypsin within liposomes without involvement of other protein factors.  相似文献   

16.
N Sone  Y Fujiwara 《FEBS letters》1991,288(1-2):154-158
Thermophilic bacterium PS3 cultured under slightly air-limited conditions showed a mitochondrion-like cytochrome pattern similar to that in vigorously aerated cells, but an o-type cytochrome replaced cytochrome a3 as the CO-binding centre. Cytochrome cao-type oxidase was purified from the cell membranes by almost the same procedure as used for cytochrome caa3. The turnover number of cytochrome cao was higher than that of cytochrome caa3, but the Km's of the two enzymes for cytochrome c and O2 were almost the same. Gel electrophoresis in the presence of sodium dodecyl sulfate gave bands of four subunits at the identical positions both for cytochrome cao and cytochrome caa3. Cytochrome cao contained a novel kind of haem in addition to haems C and A. This novel haem is likely to be haem O, very recently found as the chromophore of the cytochrome bo complex in Escherichia coli. These data suggest that cytochrome cao is an alternative form of cytochrome c oxidase (cytochrome caa3), in which the cytochrome a3 centre of the enzyme is replaced with cytochrome o.  相似文献   

17.
Cytochrome oxidase from T. thermophilus is isolated as a noncovalent complex of cytochromes c1 and aa3 in which the four redox components of aa3 appear to be associated with a single approximately 55,000-D subunit while the heme C is associated with a approximately 33,000-D peptide (Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1983) J. Biol. Chem. 258, 112-123). We have examined the steady state transfer of electrons from ascorbate to oxygen by cytochrome c1aa3 as mediated by horse heart, Candida krusei, and T. thermophilus (c552) cytochromes c as well as tetramethylphenylenediamine (TMPD). These mediators exhibit simple Michaelis-Menten kinetic behavior yielding Vmax and KM values characteristic of the experimental conditions. Three classes of kinetic behavior were observed and are qualitatively discussed in terms of a reaction scheme. The data show that tetramethylphenyldiamine and cytochromes c react with the enzyme at independent sites; it is suggested that cytochrome c1 may efficiently transfer electrons to cytochrome aa3. When incorporated into phospholipid vesicles, the highly purified cytochrome c1aa3 was found to translocate one proton into the exterior medium for each molecule of cytochrome c552 oxidized. The combined results suggest that this bacterial enzyme functions in a manner generally identical with the more complex eucaryotic enzyme.  相似文献   

18.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

19.
20.
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150,000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30,000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 +/- 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号