首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunlight penetration through the water column is controlled by the amount and kind of materials dissolved and suspended in the water. Understanding UV penetration in its complexity is essential for the prediction of the impact of UV radiation on aquatic ecosystems. However, only limited data are available on the penetration of UVR into shallow waters rich in inorganic suspended solids and chromophoric dissolved organic matter (CDOM). The same is true for the specific attenuation coefficients of light-absorbing components at the UV waveband. This study analyses the role of CDOM, algal-free suspended solids and algae in the formation of underwater UVR and PAR climate in 30 water bodies from clear gravel pit lakes trough the shallow Lake Balaton to turbid soda pans. Irradiance-depth profiles were obtained at 305, 313, 320 nm (UV-B), 340, 380, 395 nm (UV-A) and 400–700 nm (PAR) with a Biospherical PUV-2500 radiometer. Vertical attenuation coefficients (K d) were calculated. Water samples were taken for the laboratory measurement of the concentration of light-absorbing components: algae as chlorophyll a (CHL), chromophoric dissolved organic matter as colour (CDOM), and algal-free suspended solids (TSS-Alg) parallel with the in situ light measurements. Specific attenuation coefficient values were calculated by multiple regression analysis (n = 140). The obtained specific UV attenuation coefficient values of CHL, CDOM and TSS-Alg made it possible to establish light attenuation at different wavelengths based on the knowledge of the concentration of these light-absorbing components.  相似文献   

2.
In situ experiments were conducted at various depths in the water column to determine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of natural phytoplankton assemblages from the subtropical Lake La Angostura (Argentina, 26°45′ S; 65°37° W, 1980 m asl.). Water samples were taken daily and incubated under three radiation treatments: (a) Samples exposed to UVR + Photosynthetic Available Radiation (PAR) – PAB treatment (280–700 nm); (b) Samples exposed to ultraviolet-A radiation (UV-A) + PAR – PA treatment (320–700 nm), and, (c) Samples exposed to PAR only – P treatment (400–700 nm). Additionally, depth profiles were done to determine different physical (i.e., temperature and underwater radiation field) and biological characteristics of the water column – photosynthetic pigments, UV-absorbing compounds, cell concentration, deoxyribonucleic acid (DNA) and cyclobutane pyrimidine dimers (CPDs). The effects of UVR on natural phytoplankton assemblages were significant only in the first 50 cm of the water column, causing a decrease in photosynthetic rates of 36 and 20% due to UV-A and ultraviolet-B radiation (UV-B), respectively; below this depth, however, there were no significant differences between radiation treatments. Concentration of CPDs per mega base of DNA in natural phytoplankton was low, <27 CPDs MB−1 between 0 and 4 m. Data on net DNA damage, together with that on mixing conditions of the water column, suggest that mixing can favour phytoplankton by allowing cells to be transported to depths where active repair can take place. This mechanism to reduce UVR-induced DNA damage would be of great advantage for these assemblages dominated by small cyanobacteria and chlorophytes where UV-absorbing compounds that could act as sunscreens are virtually absent.  相似文献   

3.
At Helgoland, in the North Sea, growth of the high sublittoral brown macroalga Dictyota dichotoma (Hudson) Lamoroux was examined in October (the time of tetraspore release) in an outdoor tank by exposing 2-day-old germlings to four solar radiation treatments achieved with different filter materials or an additional artificial light source: photosynthetically active radiation (PAR; 395–700 nm), PAR plus ultraviolet (UV)-A (320–700 nm), full solar spectrum, or solar spectrum plus artificial UV radiation (UVR). Based on length measurements over a period of 3 weeks, the growth rate in germlings strongly decreased in conditions with UVR compared to PAR: by 14% under PAR+UV-A, by 31% under the full solar spectrum and by 65% with additional UVR. Although growth rates of germlings under UVR were reduced mainly in the first week, the plants did not regain the size of the untreated plants even after 9 weeks. Regardless of the exposure, no defects in morphology or anatomy including the exposed apical meristem were detected, except for a reduction in cell division rates perhaps due to additional cost for photoprotective or repair mechanisms. Depending on the actual position of D. dichotoma plants in the natural habitat, individuals in high positions receive substantial amounts of the more harmful UV-B while those lower down might only receive UV-A during part of the day, thus the effect of UV-B on the growth of D. dichotoma will depend on its position in the field. The effects of tidal variation of the light climate and the implications of our results for the zonation of D. dichotoma are discussed. Received in revised form: 6 July 2000 Electronic Publication  相似文献   

4.
The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280–315 nm), UV-A (315–400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4–5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk. Received in revised form: 12 May 2000 Electronic Publication  相似文献   

5.
Effects of seston on ultraviolet attenuation in Lake Biwa   总被引:3,自引:0,他引:3  
We examined the attenuation of underwater ultraviolet (UV) radiation and photosynthetically available radiation (PAR) in Lake Biwa, Japan, at offshore and inshore sites and under contrasting stratification and mixing regimes. There were large spatial differences in the water column transparency to both wavebands, despite little change in concentrations of dissolved organic carbon (DOC). The 1% of surface irradiance depth varied from 0.3 to 2.7 m at 305 nm, from 0.8 to 6.3 m at 380 nm, and from 2.3 to 12.8 m for PAR. Both PAR and UV transparency declined abruptly in the South Basin of the lake when a typhoon caused the resuspension of sediments. The water column ratio of UV to PAR increased by 30% at all stations over the course of a 3-week sampling period associated with the general increase in phytoplankton concentrations. At several sites, the diffuse attenuation coefficient for UV radiation deviated substantially from that predicted from UV-DOC models. A significantly positive linear relationship was found between UV attenuation (K d determined with a profiling UV radiometer) and the beam attenuation coefficient at 660 nm as measured by transmissometer. These results indicate that scattering and absorption by particulate matter can reduce UV transparency to below that inferred from DOC concentrations, and that current UV-exposure models should be modified to incorporate this effect. Received: March 21, 2001 / Accepted: August 17, 2001  相似文献   

6.
The increase of ultraviolet radiation (UVR, 280–400 nm) caused by stratospheric ozone depletion has profound effects on aquatic ecosystems. High-altitude lakes in the Yunnan Plateau are exposed to high intensities of UVR and contain low concentrations of chromophoric dissolved organic matter (CDOM). Thirty-eight lakes in the Yunnan Plateau with elevations from 1291 to 3809 m above sea level were investigated to study CDOM concentrations and possible effects of UVR on the lake ecosystem. The attenuation of UVR in the Yunnan Plateau lakes was calculated from the absorption coefficient of CDOM based on an empirical relationship from lakes in the Alps and Pyrenees mountains. Absorption coefficients [α(λ)] at 320 nm [α(320)] ranged from 0.52 to 14.05 m−1 (mean ± standard deviation, 4.40 ± 3.85 m−1) and at 380 nm [α(380)] from 0.05 to 4.51 m−1 (1.40 ± 1.30 m−1). The exponential slope coefficient for the relationship of wavelength to α(λ) ranged from 16.2 to 41.4 μm−1 (21.74 ± 4.93 μm−1) over the 280–400 nm interval. Normalized fluorescence emission (NFLU) at 450 nm from an excitation wavelength of 355 nm, F n(355), averaged 7.93 ± 3.22 NFLU. A significant positive relationship was found between α(355) and F n(355). The estimated diffuse attenuation coefficients of UV-B (320 nm) and UV-A (380 nm) ranged from 0.55 to 15.77 m−1 and from 0.24 to 6.73 m−1; the corresponding 1% attenuation depths ranged from 0.29 to 8.44 m and from 0.68 to 19.12 m. Twenty-five of 38 lakes had 1% UV-B attenuation depths of 1.5 m or more. The median 1% attenuation depth was 28.8% of the sampling depth for UV-B radiation and 60% for UV-A. In addition to CDOM, chlorophyll α (Chla) and total suspended matter (TSM) also may contribute to attenuation of UVR.  相似文献   

7.
The impact of ambient solar UV was studied on the photosynthesis and yield of cotton (Gossypium hirsutum) var. Vikram in a field experiment by excluding either UV-B (<315 nm) or UV-B/A (<400 nm) components of solar spectrum. Cotton plants were grown in cages covered with polyester filters that could specifically cut off UV-B or UV-B/A part of the solar spectrum. The control plants were grown under a filter transmissible to UV. Exclusion of UV enhanced plant height, leaf area, total biomass, and the yield parameters (number and weight of bolls, length of fiber and number of seeds) of cotton. Enhancement in the vegetative growth and yield of the plants could be related to enhanced rate of photosynthesis in the leaves. Polyphasic chlorophyll a fluorescence (OJIP) transients from UV excluded plants gave a higher fluorescence yield at I–P phase. Fluorescence measurements indicated enhanced F v/F m ratio and reduction capacity after exclusion of solar UV. Exclusion also enhanced stomatal conductance and intercellular CO2 concentration and reduced the stomatal resistance. Total soluble proteins were higher after UV exclusion, and in SDS–PAGE analysis, bands corresponding to smaller subunits (14 kDa) of Rubisco were more intensely stained. Experiments indicated suppressive action of ambient UV on carbon fixation and yield of cotton plants. Exclusion of solar UV proved to be beneficial in enhancing the yield of cotton plants.  相似文献   

8.
李伟  杨雨玲  黄松  董丽丽  潘健  李亚鹤  周月  高坤山 《生态学报》2015,35(23):7615-7624
为了比较研究酸雨与紫外辐射对淡水水体常见藻华蓝藻的生理学影响,选取铜绿微囊藻(Microcystis aeruginosa)产毒(FACHB-905)与不产毒(FACHB-469)株系作为实验材料,通过人工模拟酸雨,研究了不同p H处理后2藻株的光合生理变化以及对紫外辐射的敏感性的异同。实验设置3个p H梯度,p H7.10为对照组(正常培养基培养的藻体),两模拟酸雨处理组(p H5.65和p H4.50);两种辐射处理,可见光处理(PAR)以及全波长辐射处理(PAB)。研究结果表明,905藻株细胞粒径在各p H处理下都要显著高于469藻株,模拟酸雨处理显著降低了两藻株细胞的平均粒径及体积,但叶绿素含量显著提高;酸雨处理同时也引起细胞死亡率的增加,表现为藻体有效光化学效率显著降低,生长速率显著受到抑制,低p H下呈负增长,且这种抑制程度在469下更为显著。高的可见光以及紫外辐射处理,使两株系有效光化学效率随p H的降低而呈降低趋势,其中469藻株降低至更低的水平,且高光辐射以及紫外诱导的抑制率要显著高于905藻体,这可能与469藻株较低的光保护色素有关(较低的类胡萝卜素以及紫外吸收物质)。在未来全球变化背景下,不同种类的浮游植物对环境变化的响应及适应能力不同,可改变水体的群落结构和种群丰度,铜绿微囊藻905较469较强的耐受酸雨以及紫外辐射的能力,可能会使该株系在竞争力上占据优势。  相似文献   

9.
A series of experiments was conducted to test the hypothesis that populations of Diaptomus minutus routinely experiencing high levels of ultraviolet radiation (UVR) are more tolerant of UVR than are those that routinely experience low levels of UVR. The relative degree of UVR tolerance was determined by monitoring mortality induced by either lamp or solar UVR. Diaptomus minutus from the low-dissolved organic carbon (DOC), high-UVR Lake Giles were consistently more tolerant of lamp and solar UVR than were those from the moderate-DOC, low-UVR Lake Lacawac. This difference in UVR tolerance was apparent throughout the year in freshly collected animals, but it did not persist in cultured animals. The lamp UVR tolerances of cultured D.minutus were similar, except for those initiated from September collections. The September culture of Lake Giles animals was significantly more tolerant than the Lake Giles cultures initiated in December, May and June. The September culture of Lake Lacawac animals was significantly more tolerant than the June culture. The lamp UVR tolerance of freshly collected Lake Giles animals was greatest from late June through October, but the Lake Lacawac population was least tolerant in July and August. No differences in lamp UVR tolerances were detected between animals collected from the surface and those collected from deeper water of either lake. It is concluded that the Lake Giles population was more tolerant than the Lake Lacawac population and that the period of greatest tolerance occurred several months after the time period with the highest ambient levels of solar UVR. Collectively, the experiments with both field and laboratory-cultured animals suggest that acclimation time plays a large role in UVR tolerance.   相似文献   

10.
Eleven lakes in the South Island of New Zealand were sampled in summer 1996. Water column profiles of ultraviolet radiation (UVR) at four wavelengths and photosynthetically available radiation (PAR) were obtained, along with analyses of dissolved organic carbon (DOC) concentration, total suspended solids (TSS), and catchment vegetation, including forest and natural grassland. Downward attenuation coefficients (K d) and lake water transparency (1/K d) for UVR were examined in relation to these variables. Consistent with other regions of the world, DOC concentration and variables related to DOC were the best predictors of UVR penetration. With our data set, we calculated ratios of water column integrals (RI) of UVR/PAR irradiance, using equations from the literature. At DOC concentrations below 4 g m−3, a progressive increase in RI shows that lakes become increasingly transparent to UVR. We also normalized chromophoric dissolved organic matter (CDOM) absorption of UVR at 380 nm (a 380) to DOC concentration and found that the UVR-absorbing capacity per unit DOC increases with increasing percentage of forest in the catchment area. This indicates that not only DOC concentration but also DOC type or composition is important in determining the transparency of lake water to UVR, and that qualitative differences in DOC are dictated by the type and amount of vegetation present in the lake's catchment area. Received: September 18, 2000 / Accepted: December 14, 2000  相似文献   

11.
The UV-absorbing mycosporine-like amino acids (MAAs) are hypothesized to protect organisms against harmful UV radiation (UVR). Since the physiology and metabolism of these compounds are unknown, the induction and kinetics of MAA biosynthesis by various natural radiation conditions were investigated in the marine red alga Chondrus crispus collected from Helgoland, Germany. Three photosynthetically active radiation (PAR, 400–700 nm) treatments without UVR and three UV-A/B (290–400 nm) treatments without PAR were given. Chondrus crispus collected from 4–6 m depth contained only traces of the MAA palythine. After 24 h exposure to 100% ambient PAR, traces of three additional MAAs, shinorine, palythinol and palythene, were detected, and their concentrations increased strongly during a one-week exposure to all PAR treatments. The concentration of all MAAs varied directly with PAR dose, with palythine and shinorine being four- to sevenfold higher than palythinol and palythene. Likewise, naturally high doses of both UV-A and UV-B resulted in a strong accumulation of all MAAs, in particular shinorine. While shinorine accumulation was much more stimulated by UVR, the content of all other MAAs was more affected by high PAR, indicating an MAA-specific induction triggered by UVR or PAR. Received: 24 September 1997 / Accepted: 17 December 1997  相似文献   

12.
Abstract Microscale fluctuations in water level (1–20 mm) are common on a diurnal basis in shallow (<5–10 cm) wetlands, coupled to evapotranspiration losses during the daytime in excess of groundwater resupply. These depth variations alter the intensity of UV irradiance reaching attached periphytic algal and bacterial microbial communities. Effects of alterations of UV irradiance by micro-changes in water level on periphytic microbiota were examined experimentally. Attached microbial communities, grown on glass fiber filters in situ in a natural wetland, were exposed experimentally to near-natural levels of UV irradiance of differing spectral quality. UV intensity was altered by varying the distance of the communities from the light source, changes in UV-attenuating natural dissolved organic matter (DOM), and small changes in water level (2 or 4 mm). Algal productivity and photosynthetic oxygen production were significantly reduced by small enhancements of UV-B radiation, by decreased water levels of only 2 mm, and by reductions in concentrations of DOM. UV-B had only small short-term effects on chlorophyll a, although small increases in water depth and DOM concentration reduced pigment damage. Experimental removal of UV-B during in situ growth indicated that algae could adapt to UV radiation during growth in natural environments. Microbial oxygen consumption and bacterial productivity and biomass were also lowered significantly by UV-B exposure, and damage decreased with small (2 mm) increases in water depth or in DOM concentration. Selective inhibitors of algal photosynthesis and production of released extracellular organic substrates caused a concomitant reduction in bacterial productivity and a significant increase in magnitude of UV-B damage to bacterial biomass. These effects suggested that metabolic interactions between the periphytic autotrophs and heterotrophs altered community responses to UV-B radiation. Microscale water level reductions, common on a diurnal basis in shallow wetlands, and associated increased UV intensity can result in rapid alterations in periphytic metabolism. Received: 27 January 1999; Accepted: 18 May 1999  相似文献   

13.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

14.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

15.
Absorption of solar ultraviolet radiation (UVR) in aquatic ecosystems is primarily controlled by dissolved organic carbon (DOC). The role of iron (Fe) has also been suggested to contribute to UVR attenuation either directly or by interactions with DOC. Here we present findings from three laboratory manipulations of Fe and DOC on changes to the dissolved UVR absorption (ad,320) in a mid-latitude, dimictic, humic lake. In a laboratory simulation of lake turnover where anoxic, hypolimnetic water was oxygenated ad,320 significantly increased from 23.3 to 81.7 m−1 (p<0.0001). In a second laboratory experiment, addition of ferrous Fe to deoxygenated lake water increased ad,320 upon reoxygenation up to a concentration of 1.0 mg l−1 Fe, where a solubility saturation threshold may have been reached. In situ lake experiments were designed to simulate release of UV absorbing substances from anoxic sediments by placing 20-l carboys (open at the bottom, sealed at the top) onto the lake bottom. UV absorption at 320 nm increased over time for samples from within the experimental carboys. Finally, samples from several lake profiles and sediment experiments were analyzed for ad,320, total Fe, and DOC. UV absorption of dissolved substances at 320 nm and total Fe concentration both increased with depth, however DOC remained relatively constant over depth. Furthermore, total Fe and spectral slope showed tight coupling up to 1 mg l−1 total Fe in our survey analysis. Our results provide evidence for the importance of anoxic sediments as a source of ferrous iron and UV absorbing substances and suggest a role for ferric iron in increasing UVR and PAR absorption in lake water. We suggest that as this ferrous Fe oxidizes, its absorptive properties increase, and it may bind with dissolved organic matter, enabling it to remain in solution and thus increasing the dissolved absorption of lake water for extended periods of time.  相似文献   

16.
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281–293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280–315 nm), UV-A (315–400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.  相似文献   

17.
A 15 week field experiment (austral summer Nov–Mar) was carried out in an intertidal hard bottom platform in Antarctica (King George Island). To test whether grazing and ultraviolet radiation (UVR) influenced the succession of a benthic microalgal assemblage, a two-factorial design was used (1) ambient radiation, >280 nm; (2) ambient minus UV-B, >320 nm; (3) ambient minus UVR, >400 nm versus grazer–no grazer). On four sampling occasions microalgae were identified, counted and carbon contents were calculated. The assemblage was dominated by the diatom genera Navicula and Cocconeis. Biomass was generally low in all treatments but was significantly reduced by grazing throughout the experiment. No significant UV effects were found. Grazer absence particularly favoured diatoms of the genus Cocconeis. We conclude that the Antarctic microalgal assemblage was unaffected by present day UVR whereas grazers acted as important drivers on the intertidal microalgal community structure.  相似文献   

18.
Thermal,chemical, and optical properties of Crater Lake,Oregon   总被引:1,自引:1,他引:0  
Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200–250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5°C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2–550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake.  相似文献   

19.
Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using 0.22-μm-filtered samples of Meiliang Bay water from Lake Taihu that were exposed to short-term (0–12 h) simulated UV-B radiation and long-term (0–12 days) natural solar radiation in summer. CDOM absorption coefficient and fluorescence decreased with increasing exposure time, which relates to the amounts of absorbed light energy. The decreases of CDOM absorption and normalized fluorescence corresponded to first order kinetics reactions. Different decreases of CDOM absorption and fluorescence at different wavelengths suggested that the composition of CDOM changed when it absorbed ultraviolet radiation. Photochemical degradation increased the spectral slope during 275–295 nm region (S 275–295) but decreased the spectral slope during 275–295 nm region (S 350–400). The slope ratio S R (S 275–295:S 350–400) increased in the photochemical process, which could be used as an indicator of photobleaching and composition change of CDOM. Our results show that photochemical degradation is important in the cycling of CDOM, which indicated change in the composition of CDOM. Handling editor: Luigi Naselli-Flores  相似文献   

20.
Lake Baringo is a shallow equatorial lake. This paper reports a diel study of the depth-time distribution of phytoplankton and photosynthesis at one location in Lake Baringo on 10 March 1989. The water column shows a pattern of diurnal stratification probably accentuated by the high turbidity of the water and therefore rapid attenuation of solar energy. This stratified pattern breaks down at night due to atmospheric cooling and the regular onset of winds in the early evening. The phytoplankton is dominated byMicrocystis aeruginosa with some associated epiphytes. It concentrates in the narrow euphotic zone during the diurnal period of stratification due to buoyancy of theMicrocystis; evening breakdown of the thermocline results in the phytoplankton being mixed throughout the water column. A series of measurements of photosynthesis throughout the diurnal period gives an areal rate of 3.8 g O2 m−2 d−1. The relationship between this value and the level of fish exploitation in Lake Baringo is discussed. The diel cycle in Lake Baringo is interpreted as dominating over any seasonal limnological cycle in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号