首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocryptoviruses (LCVs) naturally infecting Old World nonhuman primates are closely related to the human LCV, Epstein-Barr virus (EBV), and share similar genome organization and sequences, biologic properties, epidemiology, and pathogenesis. LCVs can efficiently immortalize B lymphocytes from the autologous species, but the ability of a given LCV to immortalize B cells from other Old World primate species is variable. We found that LCV from rhesus monkeys did not immortalize human B cells, and EBV did not immortalize rhesus monkey B cells. In this study, baboon LCV could not immortalize human peripheral blood B cells but could readily immortalize rhesus monkey B cells. Thus, efficient LCV-induced B-cell immortalization across distant Old World primate species appears to be restricted by a species-specific block. To further characterize this species restriction, we first cloned the rhesus monkey LCV major membrane glycoprotein and discovered that the binding epitope for the EBV receptor, CD21, was highly conserved. Stable infections of human B cells with recombinant amplicons packaged in rhesus monkey or baboon LCV envelopes were also consistent with a species-restricted block occurring after virus binding and penetration. Transient infections of human B cells with simian LCV resulted in latent LCV EBNA-2 gene expression and activation of cell CD23 gene expression. EBV-immortalized human B cells could be coinfected with baboon LCV, and the simian virus persisted and replicated in human B cells. Thus, several lines of evidence indicate that the species restriction for efficient LCV-induced B-cell immortalization occurs beyond virus binding and penetration. This has important implications for the study of LCV infection in Old World primate models and for human xenotransplantation where simian LCVs may be inadvertently introduced into humans.  相似文献   

2.
Rhesus monkeys and other nonhuman Old World primates are naturally infected with lymphocryptoviruses (LCV) that are closely related to Epstein-Barr virus (EBV). A rhesus LCV isolate (208-95) was derived from a B-cell lymphoma in a simian immunodeficiency virus-infected rhesus macaque. The EBNA-2 homologues from 208-95 and a previous rhesus LCV isolate (LCL8664) were polymorphic on immunoblotting, so the EBNA-2 genes from these two rhesus LCV were cloned, sequenced, and compared. The EBNA-2 genes have 40% nucleotide and 41% amino acid identities, and the differences are similar to those between the type 1 and type 2 EBV EBNA-2. Sequence from a portion of the LMP1 gene which is extremely divergent among different LCV was virtually identical between the 208-95 and LCL8664 strains, confirming a common rhesus LCV background. Thus, the EBNA-2 polymorphism defines the presence of two different rhesus LCV types, and both rhesus LCV types were found to be prevalent in the rhesus monkey population at the New England Regional Primate Research Center. The existence of two rhesus LCV types suggests that the selective pressure for the evolution of two LCV types is shared by human and nonhuman primate hosts.  相似文献   

3.
4.
5.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.  相似文献   

6.
7.
8.
Rhesus macaques are naturally infected with a gammaherpesvirus which is in the same lymphocryptovirus (LCV) genus as and closely related to Epstein-Barr virus (EBV). The rhesus macaque LCV (rhLCV) contains a repertoire of genes identical to that of EBV, and experimental rhLCV infection of naive rhesus macaques accurately models acute and persistent EBV infection of humans. We cloned the LCL8664 rhLCV strain as a bacterial artificial chromosome to create recombinant rhLCV for investigation in this animal model system. A recombinant rhLCV (clone 16 rhLCV) carrying a mutation in the putative immune evasion gene rhBARF1 was created along with a rescued wild-type (rWT) rhLCV in which the rhBARF1 open reading frame (ORF) was repaired. The rWT rhLCV molecular clone demonstrated viral replication and B-cell immortalization properties comparable to those of the naturally derived LCL8664 rhLCV. Qualitatively, clone 16 rhLCV carrying a mutated rhBARF1 was competent for viral replication and B-cell immortalization, but quantitative assays showed that clone 16 rhLCV immortalized B cells less efficiently than LCL8664 and rWT rhLCV. Functional studies showed that rhBARF1 could block CSF-1 cytokine signaling as well as EBV BARF1, whereas the truncated rhBARF1 from clone 16 rhLCV was a loss-of-function mutant. These recombinant rhLCV can be used in the rhesus macaque animal model system to better understand how a putative viral immune evasion gene contributes to the pathogenesis of acute and persistent EBV infection. The development of a genetic system for making recombinant rhLCV constitutes a major advance in the study of EBV pathogenesis in the rhesus macaque animal model.  相似文献   

9.
10.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

11.
Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with epithelial cell and B-cell malignancies. EBV infection of B lymphocytes is essential for acute and persistent EBV infection in humans; however, the role of epithelial cell infection in the normal EBV life cycle remains controversial. The rhesus lymphocryptovirus (LCV) is an EBV-related herpesvirus that naturally infects rhesus macaques and can be used experimentally to model persistent B-cell infection and B-cell lymphomagenesis. We now show that the rhesus LCV can infect epithelial cells in immunosuppressed rhesus macaques and can induce epithelial cell lesions resembling oral hairy leukoplakia in AIDS patients. Electron microscopy, immunohistochemistry, and DNA-RNA in situ hybridization were used to identify the presence of a lytic rhesus LCV infection in these proliferative, hyperkeratotic, or parakeratotic epithelial cell lesions. These studies demonstrate that the rhesus LCV has tropism for epithelial cells, in addition to B cells, and is a relevant animal model system for studying the role of epithelial cell infection in EBV pathogenesis.  相似文献   

12.
We sequenced the rhesus lymphocryptovirus (LCV) genome in order to determine its genetic similarity to Epstein-Barr virus (EBV). The rhesus LCV encodes a repertoire identical to that of EBV, with 80 open reading frames, including cellular interleukin-10, bcl-2, and colony-stimulating factor 1 receptor homologues and an equivalent set of viral glycoproteins. The highly conserved rhesus LCV gene repertoire provides a unique animal model for the study of EBV pathogenesis.  相似文献   

13.
Fogg MH  Kaur A  Cho YG  Wang F 《Journal of virology》2005,79(20):12681-12691
Epstein-Barr virus (EBV) infection persists for life in humans, similar to other gammaherpesviruses in the same lymphocryptovirus (LCV) genus that naturally infect Old World nonhuman primates. The specific immune elements required for control of EBV infection and potential immune evasion strategies essential for persistent EBV infection are not well defined. We evaluated the cellular immune response to latent infection proteins in rhesus macaques with naturally and experimentally acquired rhesus LCV (rhLCV) infection. RhLCV EBNA-1 (rhEBNA-1) was the most frequently targeted latent infection protein and induced the most robust responses by peripheral blood mononuclear cells tested ex vivo using the gamma interferon ELISPOT assay. In contrast, although in vitro stimulation and expansion of rhLCV-specific T lymphocytes demonstrated cytotoxic T-lymphocyte (CTL) activity against autologous rhLCV-infected B cells, rhEBNA-1-specific CTL activity could not be detected. rhEBNA-1 CTL epitopes were identified and demonstrated that rhEBNA-1-specific CTL were stimulated and expanded in vitro but did not lyse targets expressing rhEBNA-1. Similarly, rhEBNA-1-specific CTL clones were able to lyse targets pulsed with rhEBNA-1 peptides or expressing rhEBNA-1 deleted for the glycine-alanine repeat (GAR) but not full-length rhEBNA-1 or rhLCV-infected B cells. These studies show that the rhLCV-specific immune response to latent infection proteins is similar to the EBV response in humans, and a potential immune evasion mechanism for EBNA-1 has been conserved in rhLCV. Thus, the rhLCV animal model can be used to analyze the immune responses important for control of persistent LCV infection and the role of the EBNA-1 GAR for immune evasion in vivo.  相似文献   

14.
Simian homologues of Epstein-Barr virus   总被引:3,自引:0,他引:3  
Gamma-herpesviruses closely related to the Epstein-Barr virus (EBV) are known to naturally infect Old World non-human primates and are classified in the same lymphocryptovirus (LCV) genera. LCV infecting humans and Old World primates share similar biology, and recent studies have demonstrated that these viruses share a similar repertoire of viral genes. Surprisingly, the latent infection genes associated with cell growth transformation demonstrate the most striking sequence divergence, but the functional mechanisms for these genes are generally well conserved. The recent discovery of LCVs naturally infecting New World primates has rewritten the old paradigm of LCV host range restriction to humans and Old World non-human primates, so that these viruses are more widespread than previously believed. However, the New World LCV genome has significant and interesting differences from EBV and other Old World LCVs despite similar biological properties. Thus, the simian homologues of EBV can provide an important animal model for studying LCV pathogenesis, and the similarities and differences that have evolved among these related viruses can provide a unique perspective towards a better understanding of EBV.  相似文献   

15.
16.
Replication and maintenance of the 170-kb circular chromosome of Epstein-Barr virus (EBV) during latent infection are generally believed to depend upon a single viral gene product, the nuclear protein EBNA-1. EBNA-1 binds to two clusters of sites at oriP, an 1, 800-bp sequence on the EBV genome which can support replication and maintenance of artificial plasmids introduced into cell lines that contain EBNA-1. To investigate the importance of EBNA-1 to latent infection by EBV, we introduced a frameshift mutation into the EBNA-1 gene of EBV by recombination along with a flanking selectable marker. EBV genomes carrying the frameshift mutation could be isolated readily after superinfecting EBV-positive cell lines, but not if recombinant virus was used to infect EBV-negative B-cell lines or to immortalize peripheral blood B cells. EBV mutants lacking almost all of internal repeat 3, which encode a repetitive glycine and alanine domain of EBNA-1, were generated in the same way and found to immortalize B cells normally. An EBNA-1-deficient mutant of EBV was isolated and found to be incapable of establishing a latent infection of the cell line BL30 at a detectable frequency, indicating that the mutant was less than 1% as efficient as an isogenic, EBNA-1-positive strain in this assay. The data indicate that EBNA-1 is required for efficient and stable latent infection by EBV under the conditions tested. Evidence from other studies now indicates that autonomous maintenance of the EBV chromosome during latent infection does not depend on the replication initiation function of oriP. It is therefore likely that the viral chromosome maintenance (segregation) function of oriP and EBNA-1 is what is required.  相似文献   

17.
The Epstein-Barr virus (EBV) nuclear antigen 3B (EBNA-3B) is considered nonessential for EBV-mediated B-cell growth transformation in vitro based on three virus isolates with EBNA-3B mutations. Two of these isolates could potentially express truncated EBNA-3B products, and, similarly, we now show that the third isolate, IB4, has a point mutation and in-frame deletion of 263 amino acids. In order to test whether a virus with EBNA-3B completely deleted can immortalize B-cell growth, we first cloned the EBV genome as a bacterial artificial chromosome (BAC) and showed that the BAC-derived virus was B-cell immortalization competent. Deletion of the entire EBNA-3B open reading frame from the EBV BAC had no adverse impact on growth of EBV-immortalized B cells, providing formal proof that EBNA-3B is not essential for EBV-mediated B-cell growth transformation in vitro.  相似文献   

18.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号