首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13bhnn, to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13bhnn mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13bhnn dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13bhnn mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13bhnn embryos indirectly causes dorsal defects.  相似文献   

2.
《Fungal biology》2020,124(11):969-980
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.  相似文献   

3.
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.  相似文献   

4.
We have previously reported that ADP ribosylation factor like 2 (Arl2), a small GTPase, content influences microtubule dynamics and cell cycle distribution in breast tumor cells, as well as the degree and distribution of phosphorylated P53. Here we show, in two different human breast adenocarcinoma models, that Arl2 content has a major impact on breast tumor cell aggressivity both in vitro and in vivo. Cells with reduced content of Arl2 displayed reduced contact inhibition, increased clonogenic or cluster formation as well as a proliferative advantage over control cells in an in vitro competition assay. These cells also caused larger tumors in SCID mice, a phenotype which was mimicked by the in vivo administration of siRNA directed against Arl2. Cells with increased Arl2 content displayed reduced aggressivity, both in vitro and in vivo, with enhanced necrosis and were also found to contain increased PP2A phosphatase activity. A rt-PCR analysis of fresh human tumor breast samples suggested that low Arl2 expression was associated with larger tumor size and greater risk of lymph node involvement at diagnosis. These data underline the role of Arl2, a small GTPase, as an important regulator of breast tumor cell aggressivity, both in vitro and in vivo.  相似文献   

5.
Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet–Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non‐hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N‐termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein–protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.  相似文献   

6.
The Arl3‐Arl1 GTPase cascade plays important roles in vesicle trafficking at the late Golgi and endosomes. Subunits of the conserved oligomeric Golgi (COG) complex, a tethering factor, are important for endosome‐to‐Golgi transport and contribute to the efficient functioning of the cytoplasm‐to‐vacuole targeting (Cvt) pathway, a well‐known selective autophagy pathway. According to our findings, the Arl3‐Arl1 GTPase cascade co‐operates with Cog8 to regulate the Cvt pathway via Atg9 trafficking. arl3cog8Δ and arl1cog8Δ exhibit profound defects in aminopeptidase I maturation in rich medium. In addition, the Arl3‐Arl1 cascade acts on the Cvt pathway via dynamic nucleotide binding. Furthermore, Atg9 accumulates at the late Golgi in arl3cog8Δ and arl1cog8Δ cells under normal growth conditions but not under starvation conditions. Thus, our results offer insight into the requirement for multiple components in the Golgi‐endosome system to determine Atg9 trafficking at the Golgi, thereby regulating selective autophagy.   相似文献   

7.
In situ hybridization of Frankia mRNA with specific probes wasused to localize the strains Arl3 and AcoN24d in Alnus nodulesobtained after inoculation with one or both strains. The probesconsisted of 18-mer oligonucleotides, complementary to strain-specificsequences located within the nif H gene. Sections of nodulesinoculated with only one strain revealed a specific hybridizationbetween the probe and the corresponding Frankia strain mRNA.In sections of dually-inoculated nodules the presence of thestrain AcoN24d in the nodule was clearly shown whereas thoseof the strain Arl3 could not be detected. This suggests thatthe strain Arl3 is less infective than the strain AcoN24d andis not present within the nodule. Key words: Nitrogen fixation, actinorhizae, autoradiography, histochemistry  相似文献   

8.
9.
Introduction: Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established.Objective: To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice.Material and methods: Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 µl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 µl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 µl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression.Results: An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 µl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 µl broccoli- treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 µl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 µl and 400 µl broccoli extract plus cadmium compared with the group treated solely with cadmium.Conclusion: The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.  相似文献   

10.
The small GTPase Arf-like protein 1 (Arl1) is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN). In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b) as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms) in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB) transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A), consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.  相似文献   

11.
The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13 localization is frequently restricted to a proximal ciliary compartment, where it associates with ciliary membranes via palmitoylation modification motifs. Next, we find that loss-of-function C. elegans arl-13 mutants possess defects in cilium morphology and ultrastructure, as well as defects in ciliary protein localization and transport; ciliary transmembrane proteins abnormally accumulate, PKD-2 ciliary abundance is elevated, and anterograde intraflagellar transport (IFT) is destabilized. Finally, we show that arl-13 interacts genetically with other ciliogenic and ciliary transport–associated genes in maintaining cilium structure/morphology and anterograde IFT stability. Together, these data implicate a role for JS-associated Arl13b at ciliary membranes, where it regulates ciliary transmembrane protein localizations and anterograde IFT assembly stability.  相似文献   

12.
Shu Yang 《Autophagy》2016,12(10):1721-1737
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.  相似文献   

13.
The small GTPase Arl8 is known to be involved in the periphery-directed motility of lysosomes. However, the overall importance of moving these vesicles is still poorly understood. Here we show that Drosophila Arl8 is required not only for the proper distribution of lysosomes, but also for autophagosome-lysosome fusion in starved fat cells, endosome-lysosome fusion in garland nephrocytes, and developmentally programmed secretory granule degradation (crinophagy) in salivary gland cells. Moreover, proper Arl8 localization to lysosomes depends on the shared subunits of the BLOC-1 and BORC complexes, which also promote autophagy and crinophagy. In conclusion, we demonstrate that Arl8 is responsible not only for positioning lysosomes but also acts as a general lysosomal fusion factor.  相似文献   

14.
Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition.  相似文献   

15.
BackgroundPrimary cilia have been shown to play a central role in regulating epithelial cell differentiation during injury and repair. Growing evidence implicates structural and functional abnormalities of primary cilia in kidney epithelial cells in the onset and development of various kidney diseases including polycystic kidney disease (PKD). Neutrophil-gelatinase associated lipocalin (NGAL) has been identified as a reliable urinary biomarker of kidney injury. However, the mechanism by which this protein accumulates in patient urine samples has not been fully elucidated.MethodsHuman renal tubular epithelial cells (RPTECs) were exposed to previously characterized deciliating agents to assess mechanisms of primary cilium loss. Confocal immunofluorescent imaging was employed to visualise the effects on cilia. Western blot analysis was utilised to quantify the ciliary protein Arl13b in both RPTEC whole cell lysates and supernatants. Co-immunoprecipitation was used to demonstrate co-localisation of Arl13b and NGAL in urinary samples from a clinical Chronic Allograft Nephropathy (CAN) cohort.ResultsImmunofluorescent analysis revealed that NGAL was localised to the primary cilium in RPTECs, co-localizing with a ciliary specific protein, Arl13b. Deciliation experiments showed that loss of the cilia coincided with loss of NGAL from the cells.ConclusionThe accumulation of NGAL in supernatants in vitro and in the urine of CAN patients was concurrent with loss of Arl13b, a specific ciliary protein. The findings of this study propose that increased NGAL urinary concentrations are directly linked to deciliation of the renal epithelial cells as a result of injury.  相似文献   

16.
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.  相似文献   

17.
The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.  相似文献   

18.
Arf proteins are important regulators of cellular traffic and the founding members of an expanding family of homologous proteins and genomic sequences. They depart from other small GTP-binding proteins by a unique structural device, which we call the 'interswitch toggle', that implements front–back communication from the N-terminus to the nucleotide binding site. Here we define the sequence and structural determinants that propagate information across the protein and identify them in all of the Arf family proteins other than Arl6 and Arl4/Arl7. The positions of these determinants lead us to propose that Arf family members with the interswitch toggle device are activated by a bipartite mechanism acting on opposite sides of the protein. The presence of this communication device might provide a more useful basis for unifying Arf homologs as a family than do the cellular functions of these proteins, which are mostly unrelated. We review available genomic sequences and functional data from this perspective, and identify a novel subfamily that we call Arl8.  相似文献   

19.
Access to the ciliary membrane for trans‐membrane or membrane‐associated proteins is a regulated process. Previously, we have shown that the closely homologous small G proteins Arl2 and Arl3 allosterically regulate prenylated cargo release from PDEδ. UNC119/HRG4 is responsible for ciliary delivery of myristoylated cargo. Here, we show that although Arl3 and Arl2 bind UNC119 with similar affinities, only Arl3 allosterically displaces cargo by accelerating its release by three orders of magnitude. Crystal structures of Arl3 and Arl2 in complex with UNC119a reveal the molecular basis of specificity. Contrary to previous structures of GTP‐bound Arf subfamily proteins, the N‐terminal amphipathic helix of Arl3·GppNHp is not displaced by the interswitch toggle but remains bound on the surface of the protein. Opposite to the mechanism of cargo release on PDEδ, this induces a widening of the myristoyl binding pocket. This leads us to propose that ciliary targeting of myristoylated proteins is not only dependent on nucleotide status but also on the cellular localization of Arl3.  相似文献   

20.
Lysosomes are late-endocytic organelles which primarily contribute to degradation and recycling of cellular material. From a previous proteomics study of purified rat liver lysosomal membranes we identified a protein from the Arf-family of small GTPases, Arl8b. Although proteins of the Arf-family have roles in a wide range of cellular functions, most notably roles in protein/vesicular trafficking, Arl8b represents the first from this protein family to be associated with a late-endocytic organelle. We demonstrate the co-localization of this protein with various lysosomal markers in different cell lines by confocal-immunofluorescence microscopy. We also show that GTP-restricted mutant Arl8b localizes to lysosomes and causes their redistribution to the periphery of the cell and into membrane projections. This indicates that Arl8b is involved in trafficking processes for lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号