首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five different, well-characterized mutants of the R1–6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1–6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1–6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1–6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1–6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1–6 rhodopsin in the nina E mutants. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Electrophysiological study of Drosophila rhodopsin mutants   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.  相似文献   

3.
A Drosophila mutant (ninaAP228) that is low in rhodopsin concentration but identical to the wild-type fly in photoreceptor morphology has been isolated. R1-6 photoreceptors of the mutant differ from those of wild type in that (a) the prolonged depolarizing afterpotential (PDA) is absent, (b) concentrations of rhodopsin and opsin are substantially reduced, and (c) intramembrane particle density in the membranes of the rhabdomeres is low. Each of these traits is mimicked by depriving wild- type flies of vitamin A. The ninaAP228 mutation differs from vitamin A deprivation in that in the mutant (a) the rhabdomeric membrane particle density is reduced only in the R1-6 photoreceptors and not in R7 or R8, (b) the PDA can be elicited from the R7 photoreceptors, and (c) photoconversion of R1-6 rhodopsin to metarhodopsin by ultraviolet (UV) light is considerably more efficient than in vitamin A-deprived flies. The absorption properties of the mutant rhodopsin in the R1-6 photoreceptors appear to be identical to those of wild type as judged from rhodopsin difference spectra. The results suggest that the mutation affects the opsin, rather than the chromophore, component of rhodopsin molecules in the R1-6 photoreceptors. The interaction between the chromophore and R1-6 opsin, however, appears to be normal.  相似文献   

4.
Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant   总被引:5,自引:0,他引:5  
F Steele  J E O'Tousa 《Neuron》1990,4(6):883-890
Drosophila rdgC (retinal degeneration-C) mutants show normal retinal morphology and photoreceptor physiology at young ages. Dark-reared rdgC flies retain this wild-type phenotype, but light-reared mutants undergo retinal degeneration. rdgC photoreceptors with low levels of rhodopsin as a result of vitamin A deprivation or a mutant rhodopsin (ninaE) gene fail to show rdgC-induced degeneration even after prolonged light treatment, demonstrating that degeneration occurs as a result of light stimulation of rhodopsin. Analysis of norpA; rdgC flies shows that the norpA-encoded phospholipase C, the target enzyme of the G protein activated by rhodopsin, is not required for rdgC-induced degeneration. Thus the rdgC+ gene product is required to prevent retinal degeneration that results from a previously unrecognized consequence of rhodopsin stimulation.  相似文献   

5.
6.
The photoreceptor membrane of Drosophila melanogaster (wild type, vitamin A-deprived wild type, and the mutants ninaAP228, ninaBP315, and oraJK84) was studied by freeze-fracture electron microscopy. The three mutations caused a decrease in the number of particles on the protoplasmic face of the rhabdomeric membrane. The ninaAP228 mutation affected only the peripheral photoreceptors (R1-6), while the ninaBP315 mutation affected both the peripheral (R1-6) and the central photoreceptors (R7). The oraJK84 mutation, which essentially eliminates R1-6 rhabdomeres, was found to drastically deplete the membrane particles in the vestigial R1-6 rhabdomeres but not in the normal rhabdomeres of R7 photoreceptors, suggesting that the failure of the oraJK84 mutant to form normal R1-6 rhabdomeres may be due to a defect in a major R1-6 photoreceptor-specific protein in the mutant. In all cases in which both the rhabdomeric particle density and rhodopsin content were studied, the mutations or vitamin A deprivation was found to reduce both these quantities, supporting the idea that at least the majority of the rhabdomeric membrane particles are closely associated with rhodopsin. Vitamin A deprivation and the mutations also reduced the number of particles in the plasma membrane as in the rhabdomeric membrane, suggesting that both classes of membrane contain rhodopsin.  相似文献   

7.
Molecular defects in Drosophila rhodopsin mutants   总被引:6,自引:0,他引:6  
Four well characterized Drosophila rhodopsin (ninaE) mutants possess low levels of rhodopsin in their major class of photoreceptors. The molecular defect present in each strain was determined by isolating and sequencing the mutant genes. Two missense mutants encode proteins which have arginine residues positioned within membrane-spanning domains. The third missense mutant eliminates a proline found near an extracellular domain/membrane-spanning domain interface. Thus, the low levels of rhodopsin protein found in these mutants result directly from changes in protein structure which likely affect the positioning and stability of membrane-spanning domains. The fourth and most severe mutation is a nonsense mutation.  相似文献   

8.
J Bentrop  K Schwab  W L Pak    R Paulsen 《The EMBO journal》1997,16(7):1600-1609
The cytoplasmic surface of Drosophila melanogaster Rh1 rhodopsin (ninaE) harbours amino acids which are highly conserved among G-protein-coupled receptors. Site-directed mutations which cause Leu81Gln or Asn86Ile amino acid substitutions in the first cytoplasmic loop of the Rh1 opsin protein, are shown to block rhodopsin synthesis in the nascent, glycosylated state from which the mutant opsin is degraded rapidly. In mutants Leu81Gln and Asn86Ile, only 20-30% and <2% respectively, of functional rhodopsins are synthesized and transported to the photoreceptive membrane. Thus, conserved amino acids in opsin's cytoplasmic surface are a critical factor in the interaction of opsin with proteins of the rhodopsin processing machinery. Photoreceptor cells expressing mutant rhodopsins undergo age-dependent degeneration in a recessive manner.  相似文献   

9.
Signaling at the plasma membrane is modulated by up- and downregulation of signaling proteins. A prominent example for this type of regulation is the Drosophila TRPL ion channel that changes its spatial distribution within the photoreceptor cell. In dark-raised flies TRPL is localized in the rhabdomeral photoreceptor membrane and it translocates to the cell body upon illumination. It has been shown that TRPL translocation depends on the activation of the phototransduction cascade and requires the presence of functional rhodopsin as well as Ca2+-influx through a second lightactivated ion channel, TRP. However, little is known about the cell biological mechanism underlying TRPL translocation. Here we describe a FRT/FLP screen designed to isolate mutants defective in TRPL internalization based on the localization of eGFP-tagged TRPL in the eyes of living flies. We mutated chromosome arms 2L, 2R and 3R and isolated 12 mutants that failed to internalize TRPL. We found that four mutants did not complement genes known to affect TRPL translocation, which are trp, ninaE and inaD. Two of the isolated mutants represent new alleles of trp and ninaE. The trp allele contains a premature stop codon after amino acid 884, whereas the ninaE allele has a mutation resulting in the substitution P193S. As determined biochemically no TRP or rhodopsin protein, respectively, was expressed in the eyes of these mutants. The absence of TRP or rhodopsin in the isolated mutants readily explains the defect in TRPL internalization and proves the feasibility of our genetic screen.  相似文献   

10.
The eukaryotic endoplasmic reticulum operates multiple quality control mechanisms to ensure that only properly folded proteins are exported to their final destinations via the secretory pathway and those that are not are destroyed via the degradation pathway. However, molecular mechanisms underlying such regulated exportation to these distinct routes are unknown. In this article, we report the role of Drosophila arf72A--the fly homologue of the mammalian Arl1 - in the quality checks of proteins and in the autosomal-dominant retinopathy. ARF72A localizes to the Golgi membranes of Drosophila photoreceptor cells, consistent with mammalian Arl1 localization in cell culture systems. A loss of arf72A function changes the membrane character of the endoplasmic reticulum and shifts the membrane balance between the endoplasmic reticulum and the Golgi complex toward the Golgi complex, resulting in over-proliferated Golgi complexes and accelerated protein secretion. Interestingly, our study indicated that more ARF72A localized on the endoplasmic reticulum in the ninaE(D1) photoreceptor cell, a Drosophila model of autosomal-dominant retinitis pigmentosa, compared to that in the wild-type. In addition, arf72A loss was shown to rescue the ninaE(D1)-related membrane accumulation and the rhodopsin maturation defect, and suppress ninaE(D1)-triggered retinal degeneration, indicating that rhodopsin accumulated in the endoplasmic reticulum bypasses the quality checks. While previous studies of ARF small GTPases have focused on their roles in vesicular budding and transport between the specific organelles, our findings establish an additional function of arf72A in the quality check machinery of the endoplasmic reticulum distinguishing the cargoes for secretion from those for degradation.  相似文献   

11.
12.
13.
Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.  相似文献   

14.
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.  相似文献   

15.
Neutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase. We show that secreted ceramidase functions in a cell-nonautonomous manner to maintain photoreceptor homeostasis. In the absence of ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of rhodopsin, and do not respond to light stimulus. Consistent with a cell-nonautonomous function, overexpression of ceramidase in tissues distant from photoreceptors suppresses photoreceptor degeneration in an arrestin mutant and facilitates membrane turnover in a rhodopsin null mutant. Furthermore, our results show that secreted ceramidase is internalized and localizes to endosomes. Our findings establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function.  相似文献   

16.
T. Washburn  J. E. O''Tousa 《Genetics》1992,130(3):585-595
We placed UAA, UAG and UGA nonsense mutations at two leucine codons, Leu205 and Leu309, in Drosophila's major rhodopsin gene, ninaE, by site-directed mutagenesis, and then created the corresponding mutants by P element-mediated transformation of a ninaE deficiency strain. In the absence of a genetic suppressor, flies harboring any of the nonsense mutations at the 309 site, but not the 205 site, show increased rhodopsin activity. Additionally, all flies with nonsense mutations at either site have better rhabdomere structure than does the ninaE deficiency strain. Construction and analysis of a 3'-deletion mutant of ninaE indicates that translational readthrough accounts for the extra photoreceptor activity of the ninaE309 alleles and that truncated opsins are responsible for the improved rhabdomere structure. The presence of leucine-inserting tRNA nonsense suppressors DtLa Su+ and DtLb Su+ in the mutant strains produced a small increase (less than 0.04%) in functional rhodopsin. The opal (UGA) suppressor derived from the DtLa tRNA gene is more efficient than the amber (UAG) or opal suppressor derived from the DtLb gene, and both DtLa and DtLb derived suppressors are more efficient at site 205 than 309.  相似文献   

17.
The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.  相似文献   

18.
Light-induced photoreceptor apoptosis occurs in many forms of inherited retinal degeneration resulting in blindness in both vertebrates and invertebrates. Though mutations in several photoreceptor signaling proteins have been implicated in triggering this process, the molecular events relating light activation of rhodopsin to photoreceptor death are yet unclear. Here, we uncover a pathway by which activation of rhodopsin in Drosophila mediates apoptosis through a G protein-independent mechanism. This process involves the formation of membrane complexes of phosphorylated, activated rhodopsin and its inhibitory protein arrestin, and subsequent clathrin-dependent endocytosis of these complexes into a cytoplasmic compartment. Together, these data define the proapoptotic molecules in Drosophila photoreceptors and indicate a novel signaling pathway for light-activated rhodopsin molecules in control of photoreceptor viability.  相似文献   

19.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness. Many human cases are caused by mutations in the rhodopsin gene. An important question regarding RP pathology is whether different genetic defects trigger the same or different cell death mechanisms. To answer this question, we analysed photoreceptor degeneration in P23H and S334ter transgenic rats carrying rhodopsin mutations that affect protein folding and sorting respectively. We found strong activation of calpain and poly(ADP-ribose) polymerase (PARP) in both mutants, concomitant with calpastatin down-regulation, increased oxidative DNA damage and accumulation of PAR polymers. These parameters were strictly correlated with the temporal progression of photoreceptor degeneration, mirroring earlier findings in the phosphodiesterase-6 mutant rd1 mouse, and suggesting execution of non-apoptotic cell death mechanisms. Interestingly, activation of caspases-3 and -9 and cytochrome c leakage—key events in apoptotic cell death—were observed only in the S334ter mutant, which also showed increased expression of PARP-1. The identification of the same metabolic markers triggered by different mutations in two different species suggests the existence of common cell death mechanisms, which is a major consideration for any mutation independent treatment.  相似文献   

20.
Journal of Comparative Physiology A - Intense short wavelength adaptation converts rhodopsin to a long wavelength absorbing stable metarhodopsin and inactivates R1–6 photoreceptors...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号