首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic domain of protein tyrosine phosphatase SHP-1 possesses distinct substrate specificity. It recognizes the P-3 to P-5 residues of its substrates via the beta5-loop-beta6 region. To study the substrate specificity further, we determined the structure of the catalytic domain of SHP-1 (C455S) complexed with a less-favorable-substrate peptide originated from SIRPalpha. The complex has disordered N-terminal peptide structure and reduced interactions between the N-terminal peptide and the beta5-loop-beta6 region. This could be the basis for the lower affinity of peptide pY(427) for the catalytic domain of SHP-1. In addition, by comparing the SHP-1/less-favorable peptide complex structure with the SHP-1/substrate complex structures, we identified a novel substrate-recognition site in the catalytic domain of SHP-1. This site was formed by helix alpha0 and the alpha5-loop-alpha6 motif of SHP-1, and specifically bound residues at the P + 4 and further C-terminal positions of peptide substrates.  相似文献   

2.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

3.
The substrate specificity of catalytic domains and the activation of full length protein tyrosine phosphatases, SHP-1 and SHP-2 have been investigated using synthetic phosphotyrosyl peptides derived from SIPRalpha1. We found that the catalytic domains of SHP-1 and SHP-2 exhibit different substrate specificity towards a longer trideca-peptide pY(469+3) ((-7)RPEDTLTpYADLDM(+5)) and not to the shorter decapeptide pY(469) ((-5)EDTLTpYADLD(+4)), the former being the substrate of SHP-2 only. Furthermore, the activation of full-length SHP-1 and not the SHP-2 by the deca/trideca-peptides suggested SIRPalpha 1 to be possibly acting as both an upstream activator and a substrate for SHP-1, and merely as the downstream substrate for SHP-2 in signaling events.  相似文献   

4.
The protein-tyrosine phosphatase SHP-1 is a negative regulator of multiple signal transduction pathways. We observed that SHP-1 effectively antagonized Src-dependent phosphorylations in HEK293 cells. This occurred by dephosphorylation of Src substrates, because Src activity was unaffected in the presence of SHP-1. One reason for efficient dephosphorylation was activation of SHP-1 by Src. Recombinant SHP-1 had elevated activity subsequent to phosphorylation by Src in vitro, and SHP-1 variants with mutated phosphorylation sites in the C terminus, SHP-1 Y538F, and SHP-1 Y538F,Y566F were less active toward Src-generated phosphoproteins in intact cells. A second reason for efficient dephosphorylation is the substrate selectivity of SHP-1. Pull-down experiments with different GST-SHP-1 fusion proteins revealed efficient interaction of Src-generated phosphoproteins with the SHP-1 catalytic domain rather than with the SH2 domains. Phosphopeptides that correspond to good Src substrates were efficiently dephosphorylated by SHP-1 in vitro. Phosphorylated "optimal Src substrate" AEEEIpYGEFEA (where pY is phosphotyrosine) and a phosphopeptide corresponding to a recently identified Src phosphorylation site in p120 catenin, DDLDpY(296)GMMSD, were excellent SHP-1 substrates. Docking of these phosphopeptides into the catalytic domain of SHP-1 by molecular modeling was consistent with the biochemical data and explains the efficient interaction. Acidic residues N-terminal of the phosphotyrosine seem to be of major importance for efficient substrate interaction. Residues C-terminal of the phosphotyrosine probably contribute to the substrate selectivity of SHP-1. We propose that activation of SHP-1 by Src and complementary substrate specificities of SHP-1 and Src may lead to very transient Src signals in the presence of SHP-1.  相似文献   

5.
SHP-2 is a positive component of many receptor tyrosine kinase signaling pathways. The related protein-tyrosine phosphatase (PTP) SHP-1 usually acts as a negative regulator. The precise domains utilized by SHP-2 to transmit positive signals in vivo and the basis for specificity between SHP-1 and SHP-2 are not clear. In Xenopus, SHP-2 is required for mesoderm induction and completion of gastrulation. We investigated the effects of SHP-2 mutants and SHP-2/SHP-1 chimeras on basic fibroblast growth factor-induced mesoderm induction. Both SH2 domains and the PTP domain are required for normal SHP-2 function in this pathway. The N-terminal SH2 domain is absolutely required, whereas the C-terminal SH2 contributes to wild-type function. The C-terminal tyrosyl phosphorylation sites and proline-rich region are dispensable, arguing against adapter models of SHP-2 function. Although the SH2 domains contribute to SHP-2 specificity, studies of SHP chimeras reveal that substantial specificity resides in the PTP domain. Thus, PTP domains exhibit biologically relevant specificity in vivo, and noncatalytic and catalytic domains of PTPs contribute to specificity in a combinatorial fashion.  相似文献   

6.
The phosphatase activity of SH2-containing protein tyrosine phosphatase (SHP) is inhibited by its SH2 domains and C-terminal tail. In order to determine the inhibitory effects of the SH2 domains and C-terminal tail, we have expressed and purified the catalytic domains of SHP-1 and SHP-2, and the SH2 domain truncated SHP-1 and SHP-2. We have then measured their kinetic parameters using p-nitrophenyl phosphate (p-NPP) and phosphotyrosine (pY) as substrates under the same experimental conditions. The results indicate that the pH-dependent profiles of SHP-1 and SHP-2 are mainly determined by their catalytic domains. Both enzymes have maximum activity at pH 5.0. In addition, the phosphatase activity of different forms of SHP-1 and SHP-2 decreases as the salt concentration increases. Without SH2 domains, both SHP-1 and SHP-2 are no longer inhibited by their C-terminal tails. However, the C-terminal tail of SHP-1 can further prevent the salt inhibition of the phosphatase activity. Under the same experimental conditions, the catalytic domain of SHP-1 is two times more active than the catalytic domain of SHP-2.  相似文献   

7.
Wang P  Fu H  Snavley DF  Freitas MA  Pei D 《Biochemistry》2002,41(19):6202-6210
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. In this work, we have developed a novel combinatorial library method, termed "enzyme-catalyzed loss of isotope peak signal enhancement (ECLIPSE)", to determine the substrate specificity of PTPs. This method involves partial labeling of pY at a nonbridging phosphate oxygen atom with 50% (18)O ((16)O/(18)O = 1:1). A 361-member solution-phase peptide library with randomization at the -1 and -2 positions (relative to pY), RNNXXpYA-NH(2) (X = 19 alpha-amino acids except for Cys), was synthesized with the partially (18)O-labeled pY by the split-synthesis method. Each member of the resulting pY peptide library appeared as a doublet peak in the mass spectrum (m/z m and m + 2.0043). Limited treatment of the library with a PTP removed the mass-degenerate phosphoryl group from the most preferred substrates to generate products as singlet peaks, which were readily identified and sequenced by tandem mass spectrometry. Screening of the pY library against the catalytic domain of SHP-1 revealed that SHP-1 prefers an acidic residue at the -2 position, with aspartic acid being slightly better than glutamic acid. At the -1 position, SHP-1 also prefers an acidic residue, although a variety of other amino acids are also tolerated. On the other hand, positively charged residues at these positions render the corresponding peptides very poor substrates of SHP-1. Several selected peptides were individually synthesized and assayed against SHP-1, and the kinetic data confirmed the screening results. These results demonstrate that ECLIPSE is a viable method for studying the substrate specificity of PTPs.  相似文献   

8.
SHP-1 is a cytosolic protein-tyrosine phosphatase that behaves as a negative regulator in eukaryotic cellular signaling pathways. To understand its regulatory mechanism, we have determined the crystal structure of the C-terminal truncated human SHP-1 in the inactive conformation at 2.8-A resolution and refined the structure to a crystallographic R-factor of 24.0%. The three-dimensional structure shows that the ligand-free SHP-1 has an auto-inhibited conformation. Its N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, which supports that the phosphatase activity of SHP-1 is primarily regulated by the N-SH2 domain. In addition, the C-SH2 domain of SHP-1 has a different orientation from and is more flexible than that of SHP-2, which enables us to propose an enzymatic activation mechanism in which the C-SH2 domains of SHPs could be involved in searching for phosphotyrosine activators.  相似文献   

9.
Platelet activation triggers integrin alpha(IIb)beta(3)-dependent signals and the induction of tyrosine phosphorylation of the cytoskeletal protein alpha-actinin. We have previously reported that alpha-actinin is phosphorylated by the focal adhesion kinase (FAK). In this study, a phosphatase of 68 kDa that dephosphorylated alpha-actinin in vitro was isolated from platelet lysates by three sequential chromatography steps. The phosphatase was identified as SHP-1 by electrospray tandem mass spectrometry. alpha-Actinin was dephosphorylated in vitro by recombinant SHP-1 and by SHP-1 immunoprecipitated from unstimulated or thrombin-stimulated platelet lysates. SHP-1 immunoprecipitated from lysates of platelets adherent to fibrinogen, however, failed to dephosphorylate alpha-actinin. In contrast, the activity of SHP-1 against a synthetic substrate was not affected by the mode of platelet activation. The robust and sustained phosphorylation of alpha-actinin detected in platelets adherent to fibrinogen thus correlates with a decrease in the activity of SHP-1 toward it. Tyrosine phosphorylation of alpha-actinin is seen in vanadate-treated COS-7 cells that are co-transfected with alpha-actinin and wild type FAK. Triple transfection of the cells with cDNAs encoding for alpha-actinin, FAK, and wild type SHP-1 abolished the phosphorylation of alpha-actinin. The phosphorylation of FAK, however, was barely affected by the expression of wild type SHP-1. Both alpha-actinin and FAK were phosphorylated in cells co-expressing alpha-actinin, FAK, and a catalytic domain mutant (C453S) of SHP-1. These findings establish that SHP-1 can dephosphorylate alpha-actinin in vitro and in vivo and suggest that SHP-1 may regulate the tethering of receptors to the cytoskeleton and/or the extent of cross-linking of actin filaments in cells such as platelets.  相似文献   

10.
SHP-1 is a cytoplasmic SH2 domain containing protein-tyrosine phosphatase (PTP) involved in the negative regulation of multiple signaling pathways in hematopoietic, nervous, and epithelial cells. The thyroid TRK-T3 oncogene consists of the NTRK1 tyrosine kinase domain fused in-frame with sequences of the TFG (TRK-fused gene), encoding a protein of unknown function. TFG contains a coiled-coil domain responsible for TRK-T3 oligomerization. In addition, recent analysis of the sequences outside of the coiled-coil domain suggested possible interactions with other proteins. Based on the presence of a putative SHP-1 SH2-binding site within the TFG sequences, we have investigated the role of the SHP-1 phosphatase in TRK-T3 oncoprotein signaling. In this study we show that SHP-1 interacts with and down-regulates TRK-T3. We provide evidence that SHP-1 SH2 and catalytic domains, respectively, associate with the TFG- and NTRK1-derived portions of TRK-T3. Our data contribute to the definition of cellular mechanisms involved in thyroid tumorigenesis. Moreover, it reveals TFG as a novel protein able to modulate SHP-1 activity.  相似文献   

11.
为了分离纯化SHP-1/SHP-2催化活性域蛋白(分别命名为D1C/D2C), 并估测其动力学常数, 将已经构建好的D1C/D2C重组质粒转化Escherichia coli BL21菌株, 经IPTG诱导表达、菌体裂解缓冲液悬浮和超声波破碎后, 通过HPLC分离纯化D1C/D2C蛋白, 所得产物进行SDS-PAGE电泳检测。然后, 以pY作为去磷酸化反应的底物, 利用孔雀绿显色法, 通过双倒数作图法对纯化的D1C/D2C蛋白进行动力学分析。结果表明, 本试验已成功地表达了D1C和D2C蛋白, 主要以可溶性蛋白的形式表达; 利用HPLC技术可有效地对D1C/D2C蛋白进行分离纯化; D1C的相对分子质量为34.6 kD, 米氏常数Km=2.04 mmol/L, 催化常数Kcat=44.98 s, 特异性常数Kcat/Km=22.05 L/(mmol·s); D2C的相对分子质量为35.3 kD, 米氏常数Km=2.47 mmol/L, 催化常数Kcat=27.45 s, 特异性常数Kcat/Km=11.11 L/(mmol·s); D1C的磷酸酶活性较强于D2C。  相似文献   

12.
13.
Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) is a cytosolic protein tyrosine phosphatase containing two SH2 domains in its NH2 terminus. That immunological abnormalities of the motheaten and viable motheaten mice are caused by mutations in the gene encoding SHP-1 indicates that SHP-1 plays important roles in lymphocyte differentiation, proliferation, and activation. To elucidate molecular mechanisms by which SHP-1 regulates BCR-mediated signal transduction, we determined SHP-1 substrates in B cells using the substrate-trapping approach. When the phosphatase activity-deficient form of SHP-1, in which the catalytic center cysteine (C453) was replaced with serine (SHP-1-C/S), was introduced in WEHI-231 cells, tyrosine phosphorylation of a protein of about 70 kDa was strongly enhanced. Immunoprecipitation and Western blot analyses revealed that this protein is the B cell linker protein (BLNK), also named SH2 domain leukocyte protein of 65 kDa, and that upon tyrosine phosphorylation BLNK binds to SHP-1-C/S in vitro. In vitro kinase assays demonstrated that hyperphosphorylation of BLNK in SHP-1-C/S-expressing cells was not due to enhanced activity of Lyn or Syk. Furthermore, BCR-induced activation of c-Jun NH2-terminal kinase was shown to be significantly enhanced in SHP-1-C/S transfectants. Taken collectively, our results suggest that BLNK is a physiological substrate of SHP-1 in B cells and that SHP-1 selectively regulates c-Jun NH2-terminal kinase activation.  相似文献   

14.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

15.
We are interested in constructing a model for the substrate-binding site of fatty acid elongase-1 3-ketoacyl CoA synthase (FAE1 KCS), the enzyme responsible for production of very long chain fatty acids of plant seed oils. Arabidopsis thaliana and Brassica napus FAE1 KCS enzymes are highly homologous but the seed oil content of these plants suggests that their substrate specificities differ with respect to acyl chain length. We used in vivo and in vitro assays of Saccharomyces cerevisiae-expressed FAE1 KCSs to demonstrate that the B. napus FAE1 KCS enzyme favors longer chain acyl substrates than the A. thaliana enzyme. Domains/residues responsible for substrate specificity were investigated by determining catalytic activity and substrate specificity of chimeric enzymes of A. thaliana and B. napus FAE1 KCS. The N-terminal region, excluding the transmembrane domain, was shown to be involved in substrate specificity. One chimeric enzyme that included A. thaliana sequence from the N terminus to residue 114 and B. napus sequence from residue 115 to the C terminus had substrate specificity similar to that of A. thaliana FAE1 KCS. However, a K92R substitution in this chimeric enzyme changed the specificity to that of the B. napus enzyme without loss of catalytic activity. Thus, this study was successful in identifying a domain involved in determining substrate specificity in FAE1 KCS and in engineering an enzyme with novel activity.  相似文献   

16.
17.
SHP-2, a nontransmembrane-type protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains, is thought to participate in growth factor signal transduction pathways via SH2 domain interactions. To determine the role of each region of SHP-2 in platelet-derived growth factor signaling assayed by Elk-1 activation, we generated six deletion mutants of SHP-2. The large SH2 domain deletion SHP-2 mutant composed of amino acids 198-593 (SHP-2-(198-593)), but not the smaller SHP-2-(399-593), showed significantly higher SHP-2 phosphatase activity in vitro. In contrast, SHP-2-(198-593) mutant inhibited wild type SHP-2 phosphatase activity, whereas SHP-2-(399-593) mutant increased activity. To understand these functional changes, we focused on the docking protein Gab1 that assembles signaling complexes. Pull-down experiments with Gab1 suggested that the C-terminal region of SHP-2 as well as the SH2 domains (N-terminal region) associated with Gab1, but the SHP-2-(198-593) mutant did not associate with Gab1. SHP-2-(1-202) or SHP-2-(198-593) inhibited platelet-derived growth factorinduced Elk-1 activation, but SHP-2-(399-593) increased Elk-1 activation. Co-expression of SHP-2-(1-202) with SHP-2-(399-593) inhibited SHP-2-(399-593)/Gab1 interaction, and the SHP-2-(399-593) mutant induced SHP-2 phosphatase and Elk-1 activation, supporting the autoinhibitory effect of SH2 domains on the C-terminal region of SHP-2. These data suggest that both SHP-2/Gab1 interaction in the C-terminal region of SHP-2 and increased SHP-2 phosphatase activity are important for Elk-1 activation. Furthermore, we identified a novel sequence for SHP-2/Gab1 interactions in the C-terminal region of SHP-2.  相似文献   

18.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

19.
The Src homology domain 2 (SH2)-containing tyrosine phosphatase SHP-2 has been implicated in the regulation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway. The ability of SHP-2 to regulate the PI3K/Akt pathway is suggested to result in the positive effect of SHP-2 on cell survival. Whether SHP-2 regulates insulin-like growth factor-1 (IGF-1)-dependent activation of Akt at the level of PI3K has yet to be established. Furthermore, the identification of the down-stream apoptotic target engaged by SHP-2 in cell survival also has yet to be determined. Here, we show that overexpression of a catalytically inactive mutant of SHP-2 inhibited insulin-like growth factor-1 (IGF-1)-dependent PI3K and Akt activation. Consistent with the observation that SHP-2 participates in pro-survival signaling fibroblasts expressing a deletion within exon 3 of SHP-2, which results in a truncation of the amino-terminus SH2 domain (SHP-2(Ex3-/-)), were hypersensitive to etoposide-induced cell death. SHP-2(Ex3-/-) fibroblasts exhibited enhanced levels of etoposide-induced caspase 3 activity as compared to wild-type fibroblasts and the enhanced level of caspase 3 activity was suppressed by a caspase 3-specific inhibitor. Re-introduction of wild-type SHP-2 into the SHP-2(Ex3-/-) fibroblasts rescued the hypersensitivity to etoposide-induced caspase 3 activation. The effects of abrogating SHP-2 function on cell survival were not specific to the loss of the amino-terminus SH2 domain of SHP-2 since RNAi-mediated knock-down of SHP-2 also reduced cell survival. Taken together, these data indicate that the catalytic activity of SHP-2 is required to regulate the PI3K/Akt pathway and thus likely participates in anti-apoptotic signaling by suppressing caspase 3-mediated apoptosis.  相似文献   

20.
SHP-1 (PTPN6) is a member of the SHP sub-family of protein tyrosine phosphatases and plays a critical role in the regulation of the JAK/STAT signaling pathway. Previous studies suggested that SHP-1 contains a PTP1B-like second phosphotyrosine pocket that allows for binding of tandem phosphotyrosine residues, such as those found in the activation loop of JAK kinases. To discover the structural nature of the interaction between SHP-1 and the JAK family member, JAK1, we determined the 1.8 Å co-crystal structure of the SHP-1 catalytic domain and a JAK1-derived substrate peptide. This structure reveals electron density for only one bound phosphotyrosine residue. To investigate the role of the predicted second site pocket we determined the structures of SHP-1 in complex with phosphate and sulfate to 1.37 Å and 1.7 Å, respectively, and performed anomalous scattering experiments for a selenate-soaked crystal. These crystallographic data suggest that SHP-1 does not contain a PTP1B-like second site pocket. This conclusion is further supported by analysis of the relative dephosphorylation and binding affinities of mono- and tandem-phosphorylated peptide substrates. The crystal structures instead indicate that SHP-1 contains an extended C-terminal helix α2’ incompatible with the predicted second phosphotyrosine binding site. This study suggests that SHP-1 defines a new category of PTP1B-like protein tyrosine phosphatases with a hindered second phosphotyrosine pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号