首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta 1 (TGF-beta 1) increase [35S]sulfate incorporation into proteoglycan (PG) by monkey arterial smooth muscle cells but have opposite effects on cell proliferation. The combination of these two growth regulatory peptides has an additive effect on PG synthesis but no effects on cell proliferation. The time course of sulfate incorporation after stimulation indicates that both growth factors cause maximal incorporation of sulfate into glycosaminoglycan chains by 12-18 h. The PG that is most affected is a large CSPG (Mr approximately 1.2 x 10(6)) which can be immunoprecipitated by an antibody against versican, a large CSPG synthesized by human skin fibroblasts. The hydrodynamic size of this molecule increases after PDGF and TGF-beta 1 stimulation, but the size of the core glycoprotein (Mr approximately 450,000) remains the same. Treatment with either growth factor leads to an increase in the amount of core glycoprotein for this PG. This increase correlates with an increase in the steady state level of mRNA identified by hybridization to a cDNA encoding versican. The two growth factors also increase the glycosaminoglycan chain length of this PG accounting for the greater hydrodynamic size of the molecule after stimulation. In contrast, PDGF and not TGF-beta 1 changes the composition of the glycosaminoglycan chains attached to this PG by doubling the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate. These results indicate that although both of these growth factors increase the net synthesis of a large versican like CSPG, they differ in their effects on the structure of the glycosaminoglycan chains. These post-translational modifications may relate to the growth state of the cells.  相似文献   

2.
Monolayer cell cultures and cartilage tissue fragments have been used to examine the effects of hydrostatic fluid pressure (HFP) on the anabolic and catabolic functions of chondrocytes. In this study, bovine articular chondrocytes (bACs) were grown in porous three-dimensional (3-D) collagen sponges, to which constant or cyclic (0.015 Hz) HFP was applied at 2.8 MPa for up to 15 days. The effects of HFP were evaluated histologically, immunohistochemically, and by quantitative biochemical measures. Metachromatic matrix accumulated around the cells within the collagen sponges during the culture period. There was intense intracellular, pericellular, and extracellular immunoreactivity for collagen type II throughout the sponges in all groups. The incorporation of [(35)S]-sulfate into glycosaminoglycans (GAGs) was 1.3-fold greater with constant HFP and 1.4-fold greater with cyclic HFP than in the control at day 5 (P < 0.05). At day 15, the accumulation of sulfated-GAG was 3.1-fold greater with constant HFP and 2.7-fold with cyclic HFP than the control (0.01). Quantitative immunochemical analysis of the matrix showed significantly greater accumulation of chondroitin 4-sulfate proteoglycan (C 4-S PG), keratan sulfate proteoglycan (KS PG), and chondroitin proteoglycan (chondroitin PG) than the control (P < 0.01). With this novel HFP culture system, 2.8 MPa HFP stimulated synthesis of cartilage-specific matrix components in chondrocytes cultured in porous 3-D collagen sponges.  相似文献   

3.
In the previous study, we have found that the endo-beta-xylosidase from Patinopecten had the attachment activities of glycosaminoglycan (GAG) chains to peptide. As artificial carrier substrates for this reaction, synthesis of various GAG chains having the linkage region tetrasaccharide, GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl, between GAG chain and core protein of proteoglycan was investigated. Hyaluronic acid (HA), chondroitin (Ch), chondroitin 4-sulfate (Ch4S), chondroitin 6-sulfate (Ch6S), and desulfated dermatan sulfate (desulfated DS) as donors and the 4-metylumbelliferone (MU)-labeled hexasaccharide having the linkage region tetrasaccharide at its reducing terminals (MU-hexasaccharide) as an acceptor were subjected to a transglycosylation reaction of testicular hyaluronidase. The products were analyzed by high-performance liquid chromatography and enzyme digestion, and the results indicated that HA, Ch, Ch4S, Ch6S, and desulfated DS chains elongated by the addition of disaccharide units to the nonreducing terminal of MU-hexasaccharide. It was possible to custom-synthesize various GAG chains having the linkage region tetrasaccharide as carrier substrates for enzymatic attachment of GAG chains to peptide.  相似文献   

4.
Cartilage glycosaminoglycan (GAG) synthesis and composition, upon which its structural integrity depends, varies with age, is modified by anabolic and catabolic stimuli, and is regulated by UDP-glucuronate availability. However, how such stimuli, prototypically represented by transforming growth factor-beta1 (TGF-beta1) and IL-1alpha, modify GAG synthesis during aging of normal human articular cartilage is not known. Using explants, we show that chondroitin sulfate (CS):total GAG ratios decrease, whereas C6S:C4S ratios increase with cartilage maturation, and that chondrocytes in the cartilage mid-zone, but not the superficial or deep zones, exhibit uridine 5'-diphosphoglucose dehydrogenase (UDPGD) activity, which is also increased in mature cartilage. We also show that IL-1alpha treatment reduces both total GAG and CS synthesis, decreases C6S:C4S ratios (less C6S), but fails to modify chondrocyte UDPGD activity at all ages. On the other hand, TGF-beta1 increases total GAG synthesis in immature, but not mature, cartilage (stimulates CS but not non-CS), age-independently decreases C6S:C4S (more C4S), and increases chondrocyte UDPGD activity in a manner inversely correlated with age. Our findings show that TGF-beta1, but not IL-1alpha, modifies matrix synthesis such that its composition more closely resembles "less mature" articular cartilage. These effects of TGF-beta1, which appear to be restricted to periods of skeletal immaturity, are closely associated although not necessarily mechanistically linked with increases in chondrocyte UDPGD activity. The antianabolic effects of IL-1alpha are, on the other hand, likely to be independent of any direct modification in UDPGD activity and manifest equally in human cartilage of all ages.  相似文献   

5.
In Alzheimer's disease, the major pathological features are diffuse and senile plaques that are primarily composed of the amyloid-beta (A beta) peptide. It has been proposed that proteoglycans and glycosaminoglycans (GAG) facilitate amyloid fibril formation and/or stabilize the plaque aggregates. To develop effective therapeutics based on A beta-GAG interactions, understanding the A beta binding motif on the GAG chain is imperative. Using electron microscopy, fluorescence spectroscopy, and competitive inhibition ELISAs, we have evaluated the ability of chondroitin sulfate-derived monosaccharides and disaccharides to induce the structural changes in A beta that are associated with GAG interactions. Our results demonstrate that the disaccharides GalNAc-4-sulfate(4S), Delta UA-GalNAc-6-sulfate(6S), and Delta UA-GalNAc-4,6-sulfate(4S,6S), the iduronic acid-2-sulfate analogues, and the monosaccharides d-GalNAc-4S, d-GalNAc-6S, and d-GalNAc-4S,6S, but not d-GalNAc, d-GlcNAc, or Delta UA-GalNAc, induce the fibrillar features of A beta-GAG interactions. The binding affinities of all chondroitin sulfate-derived saccharides mimic those of the intact GAG chains. The sulfated monosaccharides and disaccharides compete with the intact chondroitin sulfate and heparin GAGs for A beta binding, as illustrated by competitive inhibition ELISAs. Therefore, the development of therapeutics based on the model of A beta-chondroitin sulfate binding may lead to effective inhibitors of the GAG-induced amyloid formation that is observed in vitro.  相似文献   

6.
Incorporation of (35S)-sulfate into glycosaminoglycans (GAG) of toadfish islets of Langerhans in vitro was examined. (35S)-sulfated GAG were synthesized by a component of the microsomal fraction, and subsequently transferred to the secretion granules, mitochondria and nuclei. The predominant type of GAG synthesized was heparan sulfate, but chondroitin 4- and 6-sulfate and dermatan sulfate were also found.  相似文献   

7.
Several cytokines and growth factors act on cells after their association with the glycosaminoglycan (GAG) moiety of cell surface proteoglycans (PGs). Interferon-gamma (IFN-gamma) binds to GAG; however, the relevance of this interaction for the biological activity of IFN-gamma on human cells remains to be established. Human arterial smooth muscle cells (HASMC), the main cells synthesizing PG in the vascular wall, respond markedly to IFN-gamma. We found that treatment of HASMC with chondroitinase ABC, an enzyme that degrades chondroitin sulfate GAG, reduced IFN-gamma binding by more than 50%. This treatment increased the affinity of 125I-IFN-gamma for cells from a Kd value of about 93 nM to a Kd value of about 33 nM. However, the total binding was reduced from 9. 3 +/- 0.77 pmol/microg to 3.0 +/- 0.23 pmol/mg (n = 4). Interestingly, pretreatment with chondroitinase ABC reduced significantly the cellular response toward IFN-gamma. The interaction of IFN-gamma with chondroitin sulfate GAG was confirmed by affinity chromatography of isolated cell-associated 35S-, 3H-labeled PG on a column with immobilized IFN-gamma. The cell-associated PG that binds to IFN-gamma was a chondroitin sulfate PG (CSPG). This CSPG had a core protein of approximately 110 kDa that was recognized by anti-CD44 antibodies on Western blots. High molecular weight complexes between IFN-gamma and chondroitin 6-sulfate were observed in gel exclusion chromatography. Additions of chondroitin 6-sulfate to cultured HASMC antagonized the antiproliferative effect and expression of major histocompatibility complex II antigens induced by IFN-gamma. These results indicate that IFN-gamma binds with low affinity to the chondroitin sulfate GAG moiety of the cell surface CSPG receptor CD44. This interaction may increase the local concentration of IFN-gamma at the cell surface, thus facilitating its binding to high affinity receptors and modulating the ability of IFN-gamma to signal a cellular response.  相似文献   

8.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

9.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

10.
Glycosaminoglycans (GAGs) were prepared from the urine of three patients and from normal individuals by cetylpyridinium chloride precipitation and Pronase digestion. The GAGs were analyzed by electrophoresis, anion-exchange chromatography, and enzymatic and chemical degradation. Each of the three patients showed a four- to fivefold increase in urinary GAG excretion compared to normal controls and in one patient a tenfold increase was measured during a period of behavioral agitation which included joint swelling. Urinary GAGs from affected individuals were characterized by a high proportion of low sulfated molecules. The predominant low sulfated component was chondroitin-4-sulfate (C4S); however, small amounts of chondroitin-6-sulfate (C6S) were also present. Heparan sulfate (HS) was present in normal proportion (5-10%) and most of it was not low sulfated. Abnormal excretion of chondroitin (Ch), hyaluronic acid (HA), and dermatan sulfate (DS) was not detected. These findings suggest that the clinical manifestations of Lowe syndrome may be caused by a defect in GAG metabolism.  相似文献   

11.
The ability of chondrocytes to synthesize chondroitin-4-sulfate (C4S) as opposed to chondroitin-6-sulfate (C6S) is a phylogenetically related phenomenon seen among adult higher vertebrates and developmentally during the embryogenesis of these vertebrates. While the embryonic cartilage may be initially a C6S matrix, C4S synthesis is seen to develop with time. We have histochemically localized these differences in sulfation with the cationic carbocyanine dye, Stains-all, in a spectrum of cartilages that vary in the sulfation position of their chondroitin sulfate. Cartilages from the rat and rabbit that are predominantly C4S stained magenta at pH 4.3, while the C6S-rich cartilage matrices from the regenerating rabbit ear and lamprey cranium stained blue. Embryonic chicken cartilages develop a gradient of magenta matrix with age, with increased concentration toward the articular surface. Both magenta and blue matrices were absent after pretreatment with chondroitinase ABC but were present after Streptomyces hyaluronidase digestion. The magenta staining was a property of the cartilage matrix as a whole, since isolated C4S and C6S stained blue. The differential staining was seen at pH 4.3, but not at pH 8.8, suggesting an interaction between the chondroitin sulfate and the adjacent tissue proteins.  相似文献   

12.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

13.
A method was developed for the reconstruction of glycosaminoglycan (GAG) oligosaccharides using the transglycosylation reaction of an endo-beta-N-acetylhexosaminidase, testicular hyaluronidase, under optimal conditions. Repetition of the transglycosylation using suitable combinations of various GAGs as acceptors and donors made it possible to custom-synthesize GAG oligosaccharides. Thus we prepared a library of chimeric GAG oligosaccharides with hybrid structures composed of disaccharide units such as GlcA-GlcNAc (from hyaluronic acid), GlcA-GalNAc (from chondroitin), GlcA-GalNAc4S (from chondroitin 4-sulfate), GlcA-GalNAc6S (from chondroitin 6-sulfate), IdoA-GalNAc (from desulfated dermatan sulfate), and GlcA-GalNAc4,6-diS (from chondroitin sulfate E). The specificity of the hyaluronidase from Streptococcus dysgalactiae (hyaluronidase SD) was then investigated using these chimeric GAG oligosaccharides as model substrates. The results indicate that the specificity of hyaluronidase SD is determined by the following restrictions at the nonreducing terminal side of the cleavage site: (i) at least one disaccharide unit (GlcA-GlcNAc) is necessary for the enzymatic action of hyaluronidase SD; (ii) cleavage is inhibited by sulfation of the N-acetylgalactosamine; (iii) hyaluronidase SD releases GlcA-GalNAc and IdoA-GalNAc units as well as GlcA-GlcNAc. At the reducing terminal side of the cleavage site, the sulfated residues on the N-acetylgalactosamines in the disaccharide units were found to have no influence on the cleavage. Additionally, we found that hyaluronidase SD can specifically and endolytically cleave the internal unsulfated regions of chondroitin sulfate chains. This demonstration indicates that custom-synthesized GAG oligosaccharides will open a new avenue in GAG glycotechnology.  相似文献   

14.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

15.
Sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin 4-sulfate (C4S). A cytoadherence assay using chondroitin sulfate proteoglycans (CSPGs) is widely used for studying C4S-IRBC interactions. Bovine tracheal chondroitin sulfate A (CSA) preparation lacking a major portion of core protein has been frequently used for the assay. Here the CSPG purified from bovine trachea and CSA were assessed for IRBC binding and the CS chains studied in detail for structure-activity relationship. The IRBCs bound at significantly higher density to the CSPG than CSA. The CS chains of CSPG/CSA are heterogeneous with varying levels of 4- and 6-sulfates, which are distributed such that approximately 80% of the 4-sulfated disaccharides are present as single and blocks of two or three separated by one to three 6-sulfated disaccharides. The remainder of the 4-sulfated disaccharides is present in blocks composed of 4-12 units, separated by 6-sulfated disaccharides. In the IRBC adherence inhibition analysis, CSA fragments with 88%-92% 4-sulfate were significantly less inhibitory than the intact CSA, indicating that the regions consisting of shorter 4-sulfated blocks efficiently bind IRBCs despite the presence of relatively high levels of 6-sulfate. This is because the 6-sulfated disaccharides have unsubstituted C-4 hydroxyls that are crucial for IRBC binding. The presence of high levels of 6-sulfate, however, significantly interfere with the IRBC binding activity of CSA, which otherwise would more efficiently bind IRBCs. Thus our study revealed the distribution pattern of 4- and 6-sulfate in bovine tracheal CSA and structural basis for IRBC binding.  相似文献   

16.

Background

Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.

Methodology/Principal Findings

This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG) content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days) were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan). Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.

Conclusions/Significance

The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is suggested that exogenous stimulation may be necessary after 4 wks to further augment the functionality of developing constructs.  相似文献   

17.
Clinical observations have suggested a relationship between osteoarthritis and a changed estrogen metabolism in menopausal women. Phytoestrogens have been shown to ameliorate various menopausal symptoms. Proteoglycans (PG) consisting of low and high sulfated glycosaminoglycans (GAG) are the main components of articular cartilage matrix, and their synthesis is increased by insulin in growth plate cartilage. We have investigated whether GAG synthesis and sodium [35S]sulfate incorporation in female bovine articular chondrocytes are affected by daidzein, genistein, and/or insulin. For comparative purposes, estradiol incubations were performed. Articular chondrocytes were cultured in monolayers at 5% O2 and 5% CO2 in medium containing serum for 7 days followed by the addition of 10(-11) M-10(-4) M daidzein, genistein, 17beta-estradiol, or 5 microg/ml insulin in a serum-free culture phase of 2 days. Photometrically analyzed GAG synthesis was significantly suppressed by high doses (10(-5) M-10(-4) M) of daidzein, genistein, and 17beta-estradiol. Although insulin raised the sodium [35S]sulfate uptake significantly, different concentrations of daidzein, genistein, or 17beta-estradiol showed no significant effects. However, the stimulating effect of insulin on sulfate incorporation was enhanced significantly after preincubation of cells with 10(-11) M-10(-5) M daidzein or 10(-9) M-10(-5) M genistein but not by 17beta-estradiol. In view of the risks of long-term estrogen replacement therapy, further experiments should clarify the potential benefit of phytoestrogens and insulin in articular cartilage metabolism.  相似文献   

18.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

19.
The exposure of confluent peritubular (PT) cells from immature rat testis to insulin-like growth factor-1 (IGF-1) induced a time and dose-dependent increase of [35S]-sulfate and [3H]-d-glucosamine incorporations in newly synthesized proteoglycans (PG). This increased content of PG was the result of an enhancement of PG synthesis rather than a decreased rate of degradation. IGF-1 had no effect on the molecular weight of synthesized PG nor on the nature and distribution of the constitutive glycosaminoglycan chains, both in medium and in cell layer. The stimulation of PG synthesis by IGF-1 appeared to be due, at least partially, to an increase of glycosylation processes. IGF-1 effect was mediated by the classical tyrosine kinase signalling process, since IGF-1 action on PG synthesis was abolished by genistein and tyrphostin A9, two well known tyrosine kinase inhibitors. The increase of PG synthesis was accompanied with an undersulfation of constitutive glycosaminoglycan (GAG) chains (chondroitin sulfate and heparan sulfate chains) since the [35S]/[3H] ratio was reduced by about 20–25% in presence of IGF-1. Although the mechanism of hyaluronic acid synthesis was completely different from those of other GAG, IGF-1 also dramatically enhanced its production by PT cells.  相似文献   

20.
Calf (2-3-month-old) and steer (approximately 18-month-old) bovine articular chondrocytes were isolated and cultured as high density monolayers. The proteoglycans synthesized on day 5 during a 15-h period of labeling with [35S]sulfate or [3H]glucosamine were isolated and characterized. The majority (greater than 70%) of the newly synthesized proteoglycans were found in the medium. When viewed in the electron microscope, medium-derived proteoglycans of high buoyant density were longer in calf than in steer. The medium and extracts of the cell layer were pooled and the radiolabeled proteoglycans were fractionated by isopycnic density gradient centrifugation performed under dissociative conditions. The low buoyant density fraction contained, in both calf and steer, small-sized nonaggregating proteoglycans containing chondroitin sulfate. The high buoyant density fraction contained greater than 90% of the newly synthesized proteoglycans. The majority were able to interact with hyaluronic acid to form aggregates. Calf high buoyant density fraction proteoglycans were larger, had longer chondroitin sulfate chains and lower ratios of keratan sulfate chains/chondroitin sulfate chains than steer high buoyant density fraction proteoglycans. These maturation-related differences are typical of those present in the proteoglycans of the calf and steer cartilage matrix from which the chondrocytes were isolated. Experiments with beta-D-xylosides showed that steer cultures had the capacity to synthesize twice as many chondroitin sulfate chains/cell as calf cultures. At each xyloside concentration used, chondroitin sulfate chains were longer in calf than steer. At both ages, chain size decreased with increase in rate of synthesis; the relationship between chain size and rate of synthesis was, however, quite different at the two ages. The results of these studies suggest that articular chondrocytes have an inherent program that determines the quality of proteoglycans synthesized at different ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号