首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the ligands Mn2+, Ca2+, and methyl alpha-D-glucopyranoside to concanavalin A, purified as described (A.J. Sophianopoulos and J.A. Sophianopoulos (1981) Prep. Biochem. 11, 413-435), was studied by ultrafiltration in 0.2 M NaCl, pH 5.2 and pH 6.5 to 7, and at 23 to 25 degrees C. The association constant (Ka) of methyl alpha-D-glucopyranoside to concanavalin A was (2 +/- 0.2) X 10(3) M-1, both at pH 5.2 and 7. At pH 5.2 and in the absence of Ca2+, the Ka of Mn2+ to concanavalin A was (5 +/- 1) X 10(3) M-1, and in the presence of 1 mM Ca2+, the Ka was (9.1 +/- 2.1) X 10(5) M-1. At pH 6.5 Mn2+ bound to concanavalin A with a Ka of (7.3 +/- 1.8) X 10(5) M-1, and the binding affinity was virtually independent of the presence of Ca2+. Experiments of binding of 4-methylumbelliferyl alpha-D-mannopyranoside to concanavalin A indicated that at pH 5.2, binding of a single Mn2+ per concanavalin A monomer was sufficient to induce a fully active saccharide binding site. Ca2+ is not necessary for such activation, but rather it increases the affinity of concanavalin A for binding Mn2+.  相似文献   

2.
In addition to steady-state properties of calcium binding to parvalbumins, kinetic studies are required for adequate evaluation of the physiological roles of parvalbumins. By using a dual-wavelength spectrophotometer equipped with a stopped-flow accessory, the transient kinetics of calcium binding to parvalbumins (PA-1 and 2) from bullfrog skeletal muscle was examined at 20 degrees C in medium containing 20 mM MOPS-KOH, pH 6.80, 0.13 mM tetramethylmurexide, 25 microM CaCl2, metal-deprived PA-1 or PA-2, various concentrations of Mg2+, and KCl to adjust the ionic strength of the medium to 0.106. The results can be explained in terms of the following rate constants under the conditions mentioned above when a second-order kinetic scheme is assumed. For PA-1, the association and apparent dissociation rate constants for Ca2+ are 1.5 X 10(7) M-1 X s-1 and 1.5 s-1, respectively, or more. The rate constants for Mg2+ are 7,500 M-1 X s-1 and 5-6 s-1, respectively. For PA-2, the rate constants for Ca2+ are 7 X 10(6) M-1 X s-1 and 1.16 s-1, respectively, and those for Mg2+ are 3,500 M-1 X s-1 and 3.5-4 s-1, respectively. Increased affinities for Ca2+ and Mg2+ at 10 degrees C are largely due to decreased apparent dissociation rate constants for these divalent cations, because no significant change in the association rate constants was found.  相似文献   

3.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

4.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

5.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

6.
Inhibition of prothrombinase complex by plasma proteinase inhibitors   总被引:3,自引:0,他引:3  
V Ellis  M F Scully  V V Kakkar 《Biochemistry》1984,23(24):5882-5887
The rate of inactivation of human coagulation factor Xa by the plasma proteinase inhibitors antithrombin III and alpha 1-antitrypsin has been studied in the presence of the accessory components which constitute the prothrombinase complex. The rate of inactivation of factor Xa by antithrombin III was found to be decreased in the presence of phospholipid vesicles with high affinity for factor Xa. The second-order rate constant for the reaction fell from 6.21 X 10(4) to 3.40 X 10(4) M-1 min-1 in the presence of 20 microM phospholipid. Purified factor Va had no effect on the rate of inactivation of factor Xa in the absence of phospholipid. In the presence of phospholipid, factor Va increased the protective effect displayed by phospholipid, further reducing the rate constant to 2.20 X 10(4) M-1 min-1. The rate of inactivation of factor Xa by alpha 1-antitrypsin was unaffected under these conditions. Platelet-bound prothrombinase complex was formed by incubation of factor Xa with washed human platelets activated by a mixture of collagen and thrombin. The prothrombinase activity was inhibited by antithrombin III was a second-order rate constant of 0.85 X 10(4) M-1 min-1. This rate was obtained in both the presence and absence of exogenous factor Va. Platelet factor 3 vesicles, isolated from platelet aggregation supernatants, also formed prothrombinase complex in the presence of factor Va, and this was inhibited by antithrombin III at the same rate as the platelet-bound complex. There was no protection of the platelet-bound prothrombinase complex from inhibition by alpha 1-antitrypsin.  相似文献   

7.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

8.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

9.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

10.
The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 microM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 microM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2(+)-hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2(+)-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.  相似文献   

11.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

12.
Zinc potentiation of androgen receptor binding to nuclei in vitro   总被引:1,自引:0,他引:1  
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3471-3478
Zn2+ potentiates binding of the 4.5S [3H]dihydrotestosterone-receptor complex to isolated rat prostate Dunning tumor nuclei in vitro when assayed in the presence of 300 microM ZnCl2, 3 mM MgCl2, 0.25 M sucrose, 5 mM mercaptoethanol, 0.15 M KCl, and 50 mM tris(hydroxymethyl)aminomethane, pH 7.5. In the presence of 5 mM mercaptoethanol, the concentration of 50 microM total Zn2+ required to promote half-maximal receptor binding to nuclei corresponds to a free Zn2+ concentration of 50 nM. The receptor-nuclear interaction appears to be selective for Zn2+; other divalent cations when added at a concentration of 1 mM to a buffer containing 5 mM mercaptoethanol are less effective (Ni2+) or have essentially no effect (Ca2+, Mg2+, Mn2+, Co2+, Cu2+, and Cd2+). Zn2+ does not alter the sedimentation rate of the 4.5S [3H]dihydrotestosterone receptor in the presence of mercaptoethanol; however, in the absence of mercaptoethanol, Zn2+ causes the receptor to aggregate. Zn2+-dependent nuclear binding of the 4.5S [3H]dihydrotestosterone receptor is saturable at 1.4 X 10(-13) mol of receptor sites/mg of DNA, corresponding to approximately 1150 sites/nucleus. In the presence of excess nuclei, up to 60% of added receptor is nuclear bound. An apparent binding constant for the receptor-nuclear interaction of 10(13) M-1 was approximated. Pyridoxal 5'-phosphate (less than or equal to 10 mM), but not 0.4 M KCl, inhibits Zn2+-dependent nuclear binding of the [3H]dihydrotestosterone receptor. Up to 66% of nuclear-bound receptor can be extracted in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 10 mM pyridoxal 5'-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

14.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The influence of heparin on the inhibition of factor Xa has been studied under conditions where factor Xa is bound to collagen-thrombin-stimulated platelets to form the prothrombinase complex. Unfractionated heparin was found to cause a concentration-dependent acceleration of the inhibition of the platelet prothrombinase complex up to a maximum rate constant of 4.1 X 10(7) M-1 X min-1 at heparin concentrations of 0.2 microM and above. This is equivalent to a 4800-fold acceleration over the rate constant for the inhibition in the absence of heparin, and is 6.8-fold lower than the rate constant for the inhibition of uncomplexed factor Xa in the presence of saturating concentrations of heparin which was determined as 2.8 X 10(8) M-1 X min-1. The effects of three Mr fractions of heparin were also studied. These were a gel-filtered heparin of Mr 15000, a gel-filtered heparin of Mr 6000 and a heparin oligosaccharide (primarily 8-10 monosaccharide units) prepared by nitrous acid depolymerization, each with high affinity for antithrombin III. These fractions all accelerated the rate of the antithrombin III inhibition of the platelet prothrombinase complex, with maximum rate constants of 6.8 X 10(7), 1.4 X 10(7) and 9.8 X 10(6) M-1 X min-1, respectively. On comparison with the effect of these heparin fractions on the rate of inhibition of uncomplexed factor Xa a progressively increasing disparity between the rate of inhibition of uncomplexed and complexed factor Xa was observed, rising from 1.7-fold with the oligosaccharide to 6.8-fold with the unfractionated heparin. A possible mechanism for this differential activity between uncomplexed and complexed factor Xa with the various heparin fractions is discussed in terms of an involvement of heparin binding to factor Xa.  相似文献   

16.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

17.
Recently, Mills and Johnson [7] and our group [9] provided evidence that calmodulin contains, in addition to the four Ca2+-binding sites (capital sites), which are essential for drug- and enzyme-binding, a number of divalent cation-binding sites of different ion selectivity (auxiliary sites), which modulate drug-binding as well as the affinity of Ca2+ for the capital sites. In the present study, the number of auxiliary sites and their relationship to the capital sites were determined by equilibrium gel filtration and by flow microcalorimetry with Zn2+ and Mn2+ as selective probes for the auxiliary sites and with Cd2+ as a probe for both types of sites. In the absence of other divalent cations, 6 mol of Zn2+ bind to calmodulin with an identical affinity constant of 2,850 M-1 and a delta H0 of 106 kJ/mol calmodulin. In the presence of millimolar free Ca2+ calmodulin binds, in addition to four Ca2+, six Zn2+ with an affinity constant of 1,200 M-1 and a delta H0 of 47 kJ/mol calmodulin. The Zn2+-Ca2+ antagonism is governed by negative free energy coupling between the capital and auxiliary sites. In contrast, the Zn2+-Mg2+ antagonism follows the rule of straight competition at all six auxiliary sites. Mn2+ also binds exclusively to the auxiliary sites with affinity constants of 800 or 280 M-1 and delta H0 of 45 or 46 kJ/mol calmodulin in the absence and presence of saturating [Ca2+], respectively. Cd2+ binds to the capital sites with an affinity constant of 3.4 10(4) M-1 (delta H = 35 kJ/mol calmodulin) and to the auxiliary sites with ca. 100-fold lower affinity. The Zn2+ much greater than Mn2+ greater than or equal to Cd2+ greater than Mg2+ selectivity of the auxiliary sites corroborates the potencies of these cations in modulating drug binding. The auxiliary site-specific cations are unable to promote high-affinity complex formation between calmodulin and melittin.  相似文献   

18.
The association constants for the formation of the binary complexes of rabbit fast skeletal muscle troponin subunits have been determined for three solution conditions: (a) 1 mM CaCl2, (b) 3 mM MgCl2 and 1 mM EGTA, and (c) 2 mM EDTA. The subunits were labeled with extrinsic fluorescence probes, either 5-(iodoacetamido)eosin (IAE) or dansylaziridine (DANZ), and the binding was detected by enhancement or quenching of the probe fluorescence. The association constant for the TnI X TnT (where TnI and TnT are the inhibitory subunit and the tropomyosin-binding subunit, respectively, of troponin) complex was measured with two different probes, IAE-TnI and IAE-TnT. The measured values were not affected by the presence of Ca2+ or Mg2+, and the mean values for the three buffer conditions are, respectively, 8.0 X 10(6) and 9.0 X 10(6) M-1 for the two probes. The association constant for TnC-TnI (where TnC is the Ca2+-binding subunit of troponin) interaction was measured with three probes, IAE-TnC, DANZ-TnC, and IAE-TnI. Values of 1.7 X 10(9), 1.2 X 10(8), and 1.0 X 10(6) M-1 were obtained, respectively, in the presence of calcium ion, in the presence of magnesium ion (no calcium), and in the absence of divalent metal ions. A mean value of 4.0 X 10(7) M-1 was obtained for the association constant of TnC X TnT using DANZ-TnC and IAE-TnC as probes in the presence of calcium or magnesium ions. A value of 4.5 X 10(6) M-1 was obtained in the absence of divalent metal ions. The results show that the presence of magnesium ion in the Ca2+-Mg2+ sites strengthens the TnC-TnI and the TnC-TnT interactions and suggest that the troponin structure would be stabilized. This likely results from the effect of magnesium ion on the Ca2+-Mg2+ domains of TnC. The presence of calcium ion in the Ca2+-specific sites provides an additional binding free energy for the TnC-TnI interaction which presumably reflects the changes in the subunit interactions required for the calcium regulatory switch.  相似文献   

19.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A Ca2+-sensitive electrode was used for determination of the binding strength of Ca2+ to bovine alpha-lactalbumin in 60 mM Tris buffer (pH 7.8-8.5) in the presence of various concentrations of NaCl. The dependence of the apparent binding constant on the concentration of NaCl was consistent with competitive binding of Ca2+ and Na+, and the binding constants of Ca2+ and Na+ were found to be 2.2 (+/- 0.5) X 10(7) M-1 and 99 (+/- 33) M-1, respectively, at 37 degrees C and pH 8.0. The temperature dependence of the binding constant of Ca2+ was examined between 30 and 45 degrees C; extrapolation of the dependence led to a binding constant of approximately 1 X 10(8) M-1 at pH 8.4 and 25 degrees C. The electrostatic contribution and conformational effect of the protein were also taken into consideration, and the intrinsic binding constant of Ca2+ to native alpha-lactalbumin was calculated to be (1.2-1.5) X 10(10) M-1 at 37 degrees C and pH 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号