首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang HQ  Wu YJ  Tang RH  Liu D  Liu Y  Cashmore AR 《Cell》2000,103(5):815-827
Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair. However, cryptochromes lack photolyase activity and are characterized by distinguishing C-terminal domains. Here we show that the signaling mechanism of Arabidopsis cryptochrome is mediated through the C terminus. On fusion with beta-glucuronidase (GUS), both the Arabidopsis CRY1 C-terminal domain (CCT1) and the CRY2 C-terminal domain (CCT2) mediate a constitutive light response. This constitutive photomorphogenic (COP) phenotype was not observed for mutants of cct1 corresponding to previously described cry1 alleles. We propose that the C-terminal domain of Arabidopsis cryptochrome is maintained in an inactive state in the dark. Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain.  相似文献   

2.
Sang Y  Li QH  Rubio V  Zhang YC  Mao J  Deng XW  Yang HQ 《The Plant cell》2005,17(5):1569-1584
Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway.  相似文献   

3.
Functional and signaling mechanism analysis of rice CRYPTOCHROME 1   总被引:8,自引:0,他引:8  
Cryptochromes (CRY) are blue-light photoreceptors that mediate various light responses, such as inhibition of hypocotyl elongation, enhancement of cotyledon expansion, anthocyanin accumulation and stomatal opening in Arabidopsis. The signaling mechanism of Arabidopsis CRY is mediated through direct interaction with COP1, a negative regulator of photomorphogenesis. CRY has now been characterized in tomato, pea, moss and fern, but its function in monocots is largely unknown. Here we report the function and basic signaling mechanism of rice cryptochrome 1 (OsCRY1). Overexpresion of OsCRY1b resulted in a blue light-dependent short hypcotyl phenotype in Arabidopsis, and a short coleoptile, leaf sheath and leaf blade phenotype in rice (Oryza sativa). On fusion with beta-glucuronidase (GUS), the C-terminal domain of either OsCRY1a (OsCCT1a) or OsCRY1b (OsCCT1b) mediated a constitutive photomorphogenic (COP) phenotype in both Arabidopsis and rice, whereas OsCCT1b mutants corresponding to missense mutations in previously described Arabidopsis cry1 alleles failed to confer a COP phenotype. Yeast two-hybrid and subcellular co-localization studies demonstrated that OsCRY1b interacted physically with rice COP1 (OsCOP1). From these results, we conclude that OsCRY1 is implicated in blue-light inhibition of coleoptile and leaf elongation during early seedling development in rice, and that the signaling mechanism of OsCRY1 involves direct interaction with OsCOP1.  相似文献   

4.
Zuo Z  Liu H  Liu B  Liu X  Lin C 《Current biology : CB》2011,21(10):841-847
Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in response to blue light. But how plant cryptochromes mediate light suppression of COP1 activity remains unclear. We report here that Arabidopsis CRY2 (cryptochrome 2) undergoes blue light-dependent interaction with the COP1-interacting protein SUPPRESSOR OF PHYTOCHROME A 1 (SPA1). We demonstrate that SPA1 acts genetically downstream from CRY2 to mediate blue light suppression of the COP1-dependent proteolysis of the flowering-time regulator CONSTANS (CO). We further show that blue light-dependent CRY2-SPA1 interaction stimulates CRY2-COP1 interaction. These results reveal for the first time a wavelength-specific mechanism by which a cryptochrome photoreceptor mediates light regulation of protein degradation to modulate developmental timing in Arabidopsis.  相似文献   

5.
In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif–containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.  相似文献   

6.
7.
PP7 is a positive regulator of blue light signaling in Arabidopsis   总被引:6,自引:0,他引:6       下载免费PDF全文
Møller SG  Kim YS  Kunkel T  Chua NH 《The Plant cell》2003,15(5):1111-1119
  相似文献   

8.
Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs.  相似文献   

9.
10.
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas gibberellin (GA) signaling mediated by the GA receptor GA-INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.

Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins inhibit gibberellin (GA)-induced degradation of DELLA proteins to regulate GA signaling and photomorphogenesis.  相似文献   

11.
Shalitin D  Yu X  Maymon M  Mockler T  Lin C 《The Plant cell》2003,15(10):2421-2429
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.  相似文献   

12.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

13.
14.
Plants possess two cryptochrome photoreceptors, cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2), that mediate overlapping and distinct physiological responses. Both CRY1 and CRY2 undergo blue light-induced phosphorylation, but the molecular details of CRY1 phosphorylation remain unclear. Here we identify 19 in vivo phosphorylation sites in CRY1 using mass spectrometry and systematically analyze the physiological and photobiochemical activities of CRY1 variants with phosphosite substitutions. We demonstrate that nonphosphorylatable CRY1 variants have impaired phosphorylation, degradation, and physiological functions, whereas phosphomimetic variants mimic the physiological functions of phosphorylated CRY1 to constitutively inhibit hypocotyl elongation. We further demonstrate that phosphomimetic CRY1 variants exhibit enhanced interaction with the E3 ubiquitin ligase COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1). This finding is consistent with the hypothesis that phosphorylation of CRY1 is required for COP1-dependent signaling and regulation of CRY1. We also determine that PHOTOREGULATORY PROTEIN KINASEs (PPKs) phosphorylate CRY1 in a blue light-dependent manner and that this phosphorylation is critical for CRY1 signaling and regulation. These results indicate that, similar to CRY2, blue light-dependent phosphorylation of CRY1 determines its photosensitivity.  相似文献   

15.
16.
The interaction of light perception with development is the subject of intensive genetic analysis in the model plant Arabidopsis. We performed genetic screens in low white light-a threshold condition in which photomorphogenetic signaling pathways are only partially active-for ethyl methane sulfonate-generated mutants with altered developmental phenotypes. Recessive mutants with exaggerated developmental responses were obtained in eight complementation groups designated shl for seedlings hyperresponsive to light. shl1, shl2, shl5, and shl3 shl4 (double mutant) seedlings showed limited or no phenotypic effects in darkness, but showed significantly enhanced inhibition of hypocotyl elongation in low-white, red, far-red, blue, and green light across a range of fluences. These results reflect developmental hyper-responsiveness to signals generated by both phytochrome and cryptochrome photoreceptors. The shl11 mutant retained significant phenotypic effects on hypocotyl length in both the phyA mutant and phyB mutant backgrounds but may be dependent on CRY1 for phenotypic expression in blue light. The shl2 phenotype was partially dependent on PHYB, PHYA, and CRY1 in red, far-red, and blue light, respectively. shl2 and, in particular, shl1 were partially dependent on HY5 activity for their light-hyperresponsive phenotypes. The SHL genes act (genetically) as light-dependent negative regulators of photomorphogenesis, possibly in a downstream signaling or developmental pathway that is shared by CRY1, PHYA, and PHYB and other photoreceptors (CRY2, PHYC, PHYD, and PHYE).  相似文献   

17.
18.
SPA1 is a phytochrome A (phyA)-specific signaling intermediate that acts as a light-dependent repressor of photomorphogenesis in Arabidopsis seedlings. It contains a WD-repeat domain that shows high sequence similarity to the WD-repeat region of the constitutive repressor of light signaling, COP1. Here, using yeast two-hybrid and in vitro interaction assays, we show that SPA1 strongly and selectively binds to COP1. Domain mapping studies indicate that the putative coiled-coil domain of SPA1 is necessary and sufficient for binding to COP1. Conversely, similar deletion analyses of the COP1 protein suggest that SPA1 interacts with the presumed coiled-coil domain of COP1. To further investigate SPA1 function in the phyA signaling pathway, we tested whether SPA1, like COP1, mediates changes in gene expression in response to light. We show that spa1 mutations increase the photoresponsiveness of certain light-regulated genes within 2 h of light treatment. Taken together, the results suggest that SPA1 may function to link the phytochrome A-specific branch of the light signaling pathway to COP1. Hence, our data provide molecular support for the hypothesis that COP1 is a convergence point for upstream signaling pathways dedicated to individual photoreceptors.  相似文献   

19.
The UV-A/blue light photoreceptor crytochrome2 (cry2) plays a fundamental role in the transition from the vegetative to the reproductive phase in the facultative long-day plant Arabidopsis thaliana. The cry2 protein level strongly decreases when etiolated seedlings are exposed to blue light; cry2 is first phosphorylated, polyubiquitinated, and then degraded by the 26S proteasome. COP1 is involved in cry2 degradation, but several cop1 mutants show only reduced but not abolished cry2 degradation. SUPPRESSOR OF PHYA-105 (SPA) proteins are known to work in concert with COP1, and recently direct physical interaction between cry2 and SPA1 was demonstrated. Thus, we hypothesized that SPA proteins could also play a role in cry2 degradation. To this end, we analyzed cry2 protein levels in spa mutants. In all spa mutants analyzed, cry2 degradation under continuous blue light was alleviated in a fluence rate-dependent manner. Consistent with a role of SPA proteins in phytochrome A (phyA) signaling, a phyA mutant had enhanced cry2 levels, particularly under low fluence rate blue light. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy studies showed a robust physical interaction of cry2 with SPA1 in nuclei of living cells. Our results suggest that cry2 stability is controlled by SPA and phyA, thus providing more information on the molecular mechanisms of interaction between cryptochrome and phytochrome photoreceptors.  相似文献   

20.
Cryptochrome blue-light photoreceptors are found in both plants and animals and have been implicated in numerous developmental and circadian signaling pathways. Nevertheless, no action spectrum for a physiological response shown to be entirely under the control of cryptochrome has been reported. In this work, an action spectrum was determined in vivo for a cryptochrome-mediated high-irradiance response, the blue-light-dependent inhibition of hypocotyl elongation in Arabidopsis. Comparison of growth of wild-type, cry1cry2 cryptochrome-deficient double mutants, and cryptochrome-overexpressing seedlings demonstrated that responsivity to monochromatic light sources within the range of 390 to 530 nm results from the activity of cryptochrome with no other photoreceptor having a significant primary role at the fluence range tested. In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type. The action spectrum does not correlate well with the absorption spectra either of purified recombinant cryptochrome photoreceptor or to that of a second class of blue-light photoreceptor, phototropin (PHOT1 and PHOT2). Photoreceptor concentration as determined by western-blot analysis showed a greater stability of CRY2 protein under the monochromatic light conditions used in this study as compared with broad band blue light, suggesting a complex mechanism of photoreceptor activation. The possible role of additional photoreceptors (in particular phytochrome A) in cryptochrome responses is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号